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Purpose 
A common design strategy is to identify a sampling scheme that maximizes power under 

a predicted cost structure and fixed budget (i.e., optimal design). Conventional frameworks have 
largely assumed equal costs of sampling treatment and control units (e.g., Raudenbush, 1997; 
Konstantopoulos, 2009, 2011; Hedges & Borenstein, 2014). The purpose of this study was to 
develop a more flexible framework that allows for and leverages differential costs to improve 
design efficiency.  

Background 
Raudenbush (1997) developed an optimal design framework that identifies the sample 

allocation that produces the minimum variance of a treatment effect under a fixed budget. 
Specifically, in a two-level CRT with a total number of 𝐽 clusters and 𝑛 individuals in each 
cluster, let the cost of sampling an additional individual and cluster be 𝐶$ and 𝐶%, respectively 
such that the total cost of a study is 𝑚 = 𝐽(𝐶$𝑛 + 𝐶%). Under this budget constraint, the optimal 
sample allocation is  

𝑛 = +($,-)($,./0)
-($,.00)

+10
1/
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where 𝜌 is the unconditional intraclass correlation coefficient, 𝑅$% and 𝑅%% are the proportions of 
outcome variance explained by covariates at the individual and cluster level, respectively. Once 
an optimal individual-level sample size, 𝑛, is identified, the corresponding level-two sample size, 
𝐽, is determined by the desired power level or a given budget. 

Implicit in this framework is that the costs of sampling a unit in the treatment condition 
are equal to those in the control condition. More generally, virtually every subsequent 
development of the optimal sampling frame work has adopted this assumption (e.g., multisite 
trials in Raudenbush & Liu, 2000; three- or four-level designs in Konstantopoulos, 2009, 2011 
and Hedges & Borenstein, 2014). In many practical situations, however, the sampling cost of 
units may additionally vary by treatment condition as well as levels of hierarchy (e.g., Liu, 2003; 
Mosteller, 1995; Springer et al., 2011). In a simple recent example, in a cluster-randomized 
evaluation of whether incentives in teacher performance improve student outcomes (Springer et 
al., 2011), teachers in the experimental group were eligible to receive a bonus payment of up to 
$15,000 per year based on their students’ performance in tests whereas teachers in the control 
condition were not offered any incentive. As a result, the costs of sampling each additional 
teacher in the experimental group typically exceeded the cost associated with sampling an 
additional control teacher.   

Differential sampling costs among treatment conditions have also been documented in 
studies evaluating the effects of class size (Mosteller, 1995), community health interventions 
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(e.g., Glynn et al., 1995), training and professional development (e.g., Hiscock et al., 2008; 
Greenleaf et al., 2011; Jacob, Goddard, Kim, Miller, & Goddard, 2015; Jayanthi, Gersten, 
Taylor, Smolkowski, & Dimino, 2017). 

Liu (2003) partially relaxed these cost assumptions by allowing cost differences between 
treatment conditions. However, the Liu (2003) framework presents a type of expanded but still 
constrained optimal design because it fixes the individual-level sample size. Next, we present a 
more flexible framework for two-level CRTs. 

Optimal Design of Two-Level CRTs With Unequal Costs 
Our framework begins by first differentiating the costs between the treatment and control 

conditions. We assign 𝑐$ and 𝑐$5 as the cost of enrolling each additional individual in the control 
and treatment conditions, respectively, and we use 𝑐% and 𝑐%5 as the respective cost of sampling 
each additional control and treatment cluster. The resulting total cost of a study becomes 𝑚 =
(1 − 𝑝)𝐽(𝑐$𝑛 + 𝑐%) + 𝑝𝐽(𝑐$5𝑛 + 𝑐%5). We can then specify the number of clusters as a function of 
the remaining parameters as 

𝐽 = 9
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.     (2) 

Substituting this equation into the error variance of the treatment effect gives  
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Our framework then identifies the optimal sample allocation under unequal costs by 
minimizing this error variance of the treatment effect with respect to 𝑝 (proportion assigned to 
treatment) and 𝑛 (individuals/cluster), respectively. The derivations return the following optimal 
individual sample size  

𝑛 =
+($,-)A$,./0B
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That is, the optimal number of individuals per cluster is a function of conditional intraclass 
correlation coefficient, the proportion of groups assigned to treatment, and the costs of sampling 
(treatment and control) clusters relative to sampling (treatment and control) individuals. More 
generally, this expression extends the results of conventional equal cost optimal design 
frameworks in that it appropriately takes into account the differential sampling costs across 
treatment conditions and levels of the hierarchy. 

 The consideration of differential costs also introduces the possibility that the unbalanced 
assignment of clusters to treatment conditions can produce more power. Derivations similar to 
those above regarding the optimal individual-level sample also suggest that the optimal 
proportion of clusters to be assigned to the treatment condition is 
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That is, given different sampling costs for the treatment and control conditions, the most efficient 
assignment of clusters to conditions may not be a balanced design but rather one that directly 
considers the relative cost ratios. The optimal 𝑝 is driven by the sampling cost ratio between 
treatment conditions (i.e., (𝑐$𝑛 + 𝑐%)	/(𝑐$5𝑛 + 𝑐%5)), the more expensive it is to sample a cluster 
and/or its individuals in the treatment condition is, the smaller the optimal 𝑝. 

Comparison with the Previous Framework 
Due to space limitations, we used an example to illustrate that the proposed framework is 

more efficient (produces more power or requires a smaller budget) than the previous framework 
(Figures 1-3). Given a set of design parameters (see detail in Figure 1), the proposed framework 
results in optimal 𝑛 = 22 and optimal 𝑝 = .22, and the previous framework has optimal 𝑛 = 32 
and fixed 𝑝 = .5. The individual-level sample size in both frameworks has been in their most 
efficient allocation (Figure 1). However, the fixed 𝑝 = .5 in the previous framework departs 
from the most efficient allocation (Figure 2). As a result, the proposed framework produces more 
power or requires a smaller budget than the previous framework (Figure 3). 

Significance 
The results presented in this study expand prior considerations regarding how to optimize 

the design of studies and provide a more flexible set of tools to improve the efficiency and/or 
rigorousness of these designs. To facilitate end-user calculations, the solutions have been 
implemented in the free software R package odr (Shen & Kelcey, 2018). 
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Appendix: Figures 
 

 
Figure 1. Statistical power of different frameworks under a fixed budget and the effects on 
power when sampling departs from the optimal 𝑛. Red color = the Raudenbush framework with 
optimal 𝑛 = 32 and fixed 𝑝 = .5, blue color = the proposed framework with optimal 𝑛 = 22 and 
optimal 𝑝 = .22.  

Note. Parameter values are 𝑐$ = 10, 𝑐% = 200, 𝑐$5 = 10, 𝑐%5 = 5,000, 𝜌 = .2 (intraclass 
correlation coefficient), 𝑅$% = 𝑅%% = .5, 𝑞 = 1 (# of covariates at the level two), 𝑚 = 202,361. 
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Figure 2. Statistical power of different frameworks under a fixed budget and the effects on 
power when sampling departs from the optimal/fixed 𝑝. Red color = the Raudenbush framework 
with optimal 𝑛 = 32 and fixed 𝑝 = .5, blue color = the proposed framework with optimal 𝑛 =
22 and optimal 𝑝 = .22.  

Note. Parameter values are 𝑐$ = 10, 𝑐% = 200, 𝑐$5 = 10, 𝑐%5 = 5,000, 𝜌 = .2 (intraclass 
correlation coefficient), 𝑅$% = 𝑅%% = .5, 𝑞 = 1 (# of covariates at the level two), 𝑚 = 202,361. 
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Figure 3. Required budget to achieve a same level of statistical power under different 
frameworks. Red color = the Raudenbush framework with optimal 𝑛 = 32 and fixed 𝑝 = .5, blue 
color = the proposed framework with optimal 𝑛 = 22 and optimal 𝑝 = .22.  

Note. Parameter values are 𝑐$ = 10, 𝑐% = 200, 𝑐$5 = 10, 𝑐%5 = 5,000, 𝜌 = .2 (intraclass 
correlation coefficient), 𝑅$% = 𝑅%% = .5, 𝑞 = 1 (# of covariates at the level two). 

 

 


