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Background/Context:

Partially nested randomized trials are special cases of cluster randomized trials (Lohr, Schochet,
& Sanders, 2014). The main distinction is that while in cluster randomized trials both treatment
and control possess cluster structures, only the treatment group possess a cluster structure in par-
tially nested randomized trials. Partially nested structure is common in education interventions.
The most obvious example is the evaluation of summer interventions. For example, while evalu-
ating summer reading interventions, the treatment group is clustered with interventionists while
the control group is not (e.g., Reed, Aloe, Reeger, & Folsom, 2019). In the last decade several
manuscripts considered issues related to partially nested design. For example, Lohr et al. (2014)
discussed the design and analyses of partially nested randomized trials, Bauer, Sterba, and Hall-
fors (2008) considered issues in the analyses of partially nested randomized trials, while Hedges
and Citkowicz (2015) and Lai and Kwok (2016) considered the estimation of effect sizes (i.e., the
standardized mean differences).

However, none of the current literature in education explored directly issues related to the power
of cluster randomized trials. The power of the statistical model plays a direct role in the design
stage of any randomized trial. Determining the number of units needed to implement an exper-
imental design is required by most (if not all) funding agencies. However, most statistical soft-
wares used by educational researchers at the planning stage of their studies do not allow for the
direct estimation of power for partially nested randomized trials. Moreover, within the popular
mixed models packages in R language such as lme4, researchers do not have the flexibility to
estimate a partially nested model properly directly. It appears that some researchers intending to
account for the partially nested data structure on lme4 attempt to achieve their goal by coding
the control group as nested within one single ID. We will also demonstrate that this practice does
not produce an optimal result.

Purpose / Objective / Research Question / Focus of Study:

We developed a new package in R names pcluster that allows the proper estimation of par-
tially nested models. We investigate via Monte Carlo Simulations the performance of imple-
menting a fully nested model with all members of the control group belonging to the same group
against the proper implementation of the partially nested model. The details of both models are
discussed in the next section.

The goal of our first simulation was to examine the performance of partially nested model
against mixed model (treating all control individuals as one group) in the following three aspects:

• Empirical sizes and powers of testing H0 : µT
· �µC = 0 using 95% CIs

• Coverage rates of 80% CIs of µT
· �µC, and

• Coverage rates of 95% CIs of d

The goal of our second simulation was to compare the performance of CIs under three models:

• OLS model (ignore clustering of individuals, i.e., r = 0),

• mixed model (treating all control individuals as one group),

• partially-clustered model.
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Significance / Novelty of study:

R package pcluster is created to accommodate the special structure of (weighted) partially-
clustered model given the inflexibility of currently available packages for mixed model analysis.

Statistical, Measurement, or Econometric Model:

A regular mixed model framework in matrix form is

y = Xbbb +Zb+eee, (1)

where y is the vector of responses, X and Z are known design matrices for fixed- and random-
effects, bbb and b are unknown vectors of fixed- and random-effects and eee is the vector of errors.
Moreover,
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In practice, primary study researchers might encounter subjects with multiple membership. For
instance, for a study of a specific learning technique on children’s verbal skills, children might be
clustered according to different schools, classes and teachers. The mixed model framework with
q memberships, in matrix form, is

y = Xbbb +
q

Â
j=1

Z jb j
+eee, (2)

where y is the vector of responses, X and Z j’s are known design matrices for fixed- and random-
effects, bbb and b

j
’s are unknown vectors of fixed- and random-effects and eee is the vector of errors.

Moreover,
2

6664

b1
...

b
q

eee

3

7775
⇠ N

0

BBB@
000,

2

6664

t2
1 I

. . .
t2

q
I

s2
I

3

7775

1

CCCA
.

It can be easily seen that (1) is simply a special case of (2) when q = 1. The parameters can
be estimated with MLE, based on regular or REML log-likelihood. The regular log-likelihood
function is
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The REML log-likelihood function is
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where r = n� rank(X) and A is column combination of n� r linearly independent vectors a
i

such that a
0
i
X = 000 for i = 1,2, ...,n� r. In pcluster package, a

i
are chosen from I�PX =

I�X(X0
X)�1

X
0. Alternatively, PROC MIXED in SAS uses the following REML log-likelihood
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y. Once the estimates of variance components, i.e., bt2
j
’s and

bs2, are obtained from maximizing `R1 or `R2, the estimate of fixed effect is
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We conducted two Monte Carlo simulation studies. For each condition we performed a 1,000
replications using the lme4 and the pcluster packages.

For this simulation, we choose µC = 0, s2
W

= t2 = 1, hence ICC r = t2

s2
W
+t2 = 0.5. n1 = · · · =

nm = n, NC = NT = mn, then N = NC +NT = 2mn. Three varying quantities are cluster number
m = (10,20,30), cluster size n = (5,10,15,20,25) and d = (0,0.25,0.5,0.75). Since d = µT

· �µCp
s2

W
+t2 ,

d corresponds to µT
· = (0,

p
2/4,

p
2/2,3

p
2/4).

For this second simulation, we choose µC = 0, s2
W

= 1. n1 = · · · = nm = n, NC = NT = mn,
then N = NC +NT = 2mn. Four varying quantities are cluster number m = (10,20,30), cluster
size n = (5,10,15,20,25), d = (0,0.25,0.50,0.75) and t2 = (0.10,0.25,0.50,0.75). Thus, the
corresponding r = (0.091,0.200,0.333,0.500). Since d = µT

· �µCp
s2

W
+t2 , d corresponds to µT

· =

(0,
p

2/4,
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Usefulness / Applicability of Method: The results of our two Monte Carlo simulation studies
demonstrate the importance of using a package that specifies the model properly. The beta ver-
sion of the pcluster package will be available to researchers by the time of this presentation
via GitHub and shortly after deposited in CRAN. The models are specified very similarly to the
popular lme4 package. The pcluster package can be used at the planning stage of a study
to determine the number of units needed via simulation. Certainly, it can be used to properly
implement the analyses of partially nested models. Among its functionality, the pcluster
package allows researchers to specify models with common or different within variance compo-
nents, different levels of nested structure between treatment and control groups, and user defined
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weights. Thus, this presentation not only demonstrates the importance of properly specified
partially nested models, but it also will introduce a R package for researchers to be able to imple-
ment these models in their own research.

Conclusions:

From the results of our two simulation studies, we can conclude that, compared to partially-
clustered model, mixed model produces severely conservative results, while OLS model has
quite radical ones. Simulation I indicates that the empirical sizes of the Type I error under partially-
clustered model are close to nominal level of 0.05, especially when the cluster count m increases,
while the empirical sizes under mixed model are extremely low. The coverage rates under partially-
clustered model start to be slightly below the nominal level of 0.80 when the cluster count m is
small, and fluctuate around the nominal level when m = 30. However, under the mixed model
setting, the coverage rates are extremely high (almost 100% in many cases). These high cov-
erage rates under mixed model are at the cost of precision. On average, the width of CI from
mixed model is roughly 4 times of that from partially-clustered model, which is the result of huge
standard error of bµT

· � bµC from the mixed model.

Results of our second simulation indicated that the differences among three models are
small when r is small, when the covariance structure is close to the OLS setting. The empirical
sizes under mixed model are extremely low, which are almost 0 when ICC r and the cluster
count m are large. For OLS model, the empirical sizes are always beyond nominal level of 0.05,
and the inflation is more severe when the cluster size n or r increases, but seems consistent when
the cluster count m changes. Generally, the empirical power values under OLS model are always
higher than those under the partially nested model, while those under the mixed model are even
below those under partially nested model. The empirical power levels under mixed model are
somewhat consistent against varying cluster count m, but they either stay at a lower level than
the empirical powers under other two models, when r is small and d is large, or just stay at zero
when r is large. The empirical powers of both OLS and partially nested models have increasing
patterns as the cluster count m and cluster size n increase, when d is small, and they stay around 1
when either cluster count m and d are large.
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