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Theoretical Framework  

Frequently Cluster randomized trials (CRTs) in education entail a longitudinal component 

where for example students are followed across grades. Suppose a researcher is interested in 

estimating the change in mathematics for students who use a novel mathematics curriculum vis-

a-vis students who use a traditional mathematics curriculum.  

Trajectories of change can be represented via polynomial functions (linear, quadratic, etc.)  

(Raudenbush & Liu, 2001). Studies about polynomial change may have a nested structure. In 

education, for example, repeated measurements of student achievement are nested within 

students, who are nested within schools. Previous work has used two-level (e.g., measurements 

within students) and three-level models (e.g., measurement within students, and students within 

schools) to compute power to detect treatment effects in longitudinal CRTs (Li & 

Konstantopoulos, 2017, 2019; Raudenbush & Liu, 2001). 

However, frequently the objective is to determine whether treatment effects on student 

achievement vary across student (e.g., gender, ethnicity, or SES) or school (e.g., rural versus 

urban) characteristics. These student and school variable/characteristics are called moderators. A 

moderator effect is represented in linear models via an interaction term, and its significance 

indicates the treatment effect is influenced by the moderator. Prior work has provided formulas 

for power analyses of moderator effects in cross-sectional two- and three-level CRTs (Dong, 

Spybrook, & Kelcey, 2018; Spybrook, Kelcey, & Dong, 2016).  

 

Purpose 

Currently, there are no studies that provide power formulas for moderator effects in 

longitudinal two- and three-level CRTs. This study fills in the literature gap and provides 

methods for power analysis of tests of moderator effects in longitudinal CRT designs. We 

discuss two- (e.g., repeated measures nested within students) and three-level (e.g., repeated 

measures nested within students nested within schools) designs where the treatment is at the 

second or third level respectively. Because of space limitations we only focus on three-level 

designs.  

 

Methods 

We utilized orthogonal polynomial contrast coefficients to describe our models below 

because they are independent of each other.  

 

Three-Level Model with a Level-3 Moderator   

Consider a three-level longitudinal CRT design where level-3 units (e.g., schools) are 

randomly assigned to treatment or control conditions. Suppose there is only one level-3 

moderator; then the first, second and third-level models are expressed as   

 

Level 1: 𝑌𝑔𝑖𝑗 = 𝛼0𝑖𝑗𝑐0𝑔 + 𝛼1𝑖𝑗𝑐1𝑔 + 𝛼2𝑖𝑗𝑐2𝑔 + ⋯ + 𝛼(𝐾−1)𝑖𝑗𝑐(𝐾−1)𝑔 + 𝑒𝑔𝑖𝑗, 𝑒𝑔𝑖𝑗~𝑁(0, 𝜎𝑒
2), 

 

Level 2: 𝛼𝑘𝑖𝑗 = 𝛽𝑘0𝑗 + 𝜝𝒌𝟏𝒋𝑿𝒊𝒋 + 𝜉𝑘𝑖𝑗, 𝜉𝑘𝑖𝑗~𝑁(0, 𝜏𝑘|𝐗
2 ),     (1) 

 

Level 3: 𝛽𝑘0𝑗 = 𝛾𝑘00 + 𝛾𝑘01𝑇𝑗 + 𝛾𝑘02𝑆𝑗 + 𝛾𝑘03(𝑆𝑗𝑇𝑗) + 𝜞𝒌𝟎𝟒𝒁𝒋 + 𝑢𝑘0𝑗, 𝑢𝑘0𝑗~𝑁(0, 𝜔0𝑘|𝑇𝑆𝐙
2 ), 



 

where 𝑐𝑘𝑔 represent orthogonal polynomial contrasts of degree k (k = 0, 1, …, K-1) at 

measurement occasion g (g = 1, …, G), 𝛼𝑝𝑖’s represent the mean and the rates of change (linear, 

quadratic, cubic, etc.), 𝑒𝑔𝑖 is level-1 residual with variance 𝜎𝑒
2, 𝑿𝒊𝒋 is a row vector of q level-2 

covariates, 𝜉𝑘𝑖𝑗 is a level-2 residual with variance 𝜏𝑘|𝐗
2 , 𝑆𝑗 is a level-3 continuous moderator, 𝒁𝒋 is 

a row vector of v level-3 covariates, 𝛾𝑘03 is the moderator effect, and 𝜂𝑘0𝑗  is a level-3 residual 

with variance 𝜔0𝑘|𝑇𝑆𝐙
2 . The variance of �̂�𝑘0𝑗 is 

 

𝑉𝑎𝑟(�̂�𝑘0𝑗) = 𝜂3𝑘𝜔0𝑘
2 + (𝜂2𝑘𝜏𝑘

2 + 𝜎𝑘
2)/𝑛,                                                          (2) 

 

where 𝜔0𝑘
2  is the level-3variance for the k-th polynomial change in the unconditional model; 𝜏𝑘

2 

is the level-2 variance for the k-th polynomial change in the unconditional model; 𝜂3𝑘 =
𝜔0𝑘|𝑇𝑆𝐙

2

𝜔0𝑘
2 , 

is the proportion of unexplained variance at level-3; 𝜂2𝑘 =
𝜏𝑘|𝐗

2

𝜏𝑘
2 , is the proportion of unexplained 

variance at level-2; 𝜎𝑘
2 = 𝑉𝑎𝑟(�̂�𝑘𝑖|𝛼𝑘𝑖) =

𝜎𝑒
2

∑ 𝑐2
𝑘𝑔

𝐺
𝑔=1

, is the level-1 variance of the k-th polynomial 

change, ∑ 𝑐2
𝑘𝑔

𝐺
𝑔=1 = 𝑘𝑘

2 ⋅
(𝑘!)4

(2𝑘)!⋅(2𝑘+1)!
⋅

(𝐺+𝑘)!

(𝐺−𝑘−1)！
, and 𝑘𝑘 is a positive constant.  

Suppose there are M schools and within each school there are n students. The variance of the 

moderator effect is  

 

𝑉𝑎𝑟(𝛾𝑘03) =
𝑉𝑎𝑟(�̂�𝑘0𝑗)

𝑃(1−𝑃)𝑀𝜁𝑆
2 =

𝜂3𝑘𝜔0𝑘
2 +(𝜂2𝑘𝜏𝑘

2+𝜎𝑘
2)/𝑛

𝑃(1−𝑃)𝑀𝜁𝑆
2 ,                                                   (3) 

 

where 𝜁𝑆
2 is the variance of the level-3 moderator 𝑆𝑗.   

Suppose that 𝜏𝑘
2 + 𝜎𝑘

2 = 1, 𝜁𝑆
2 = 1 and the effect size is 𝛿𝑘 = 𝛾𝑘03√

𝜁𝑆
2

𝜔0𝑘
2 +𝜏𝑘

2, where 𝜔0𝑘
2 , 𝜏𝑘

2, 

and 𝜎𝑘
2 are level-3, level-2, and level-1 variance components respectively in the unconditional 

model. Then, the standardized formula of the non-centrality parameter of the t-test of the 

moderator effect is  

λ = 𝛿𝑘√
𝑃(1−𝑃)𝑀𝑛𝑟𝑘

𝑛𝜂3𝑘𝜌𝑘𝑟𝑘+[1−(1−𝜂2𝑘)𝑟𝑘)](1−𝜌𝑘)
 ,                                                                (4) 

 

where 𝑟𝑘 =
𝜏𝑘

2

𝜏𝑘
2+𝜎𝑘

2,  is the reliability of the least-squares estimator �̂�𝑘𝑖𝑗, and 𝜌𝑘 =
𝜔0𝑘

2

𝜔0𝑘
2 +𝜏𝑘

2 is the 

intraclass correlation coefficient (ICC) for the k-th polynomial change. The degrees of freedom 

(df) of the t-test are 𝑑𝑓 = 𝑀 − 𝑣 − 4, when the model includes three terms (the treatment 

variable, the moderator, and the interaction term between the two), one intercept, and v level-3 

covariates.  

When 𝑆𝑗 is a binary moderator (e.g., rural versus urban schools) 𝜁𝑤
2 = 𝑄(1 − 𝑄), and Q is 

the proportion of rural schools. The variance of 𝛾𝑘03 becomes  

 

𝑉𝑎𝑟(𝛾𝑘03) =
𝜂3𝑘𝜔0𝑘

2 +(𝜂2𝑘𝜏𝑘
2+𝜎𝑘

2)/𝑛

𝑃(1−𝑃)𝑄(1−𝑄)𝑀
 ,                                                                  (5) 



 

and the non-centrality parameter of the t-test becomes  

 

λ = 𝛿𝑘√
𝑃(1−𝑃)𝑄(1−𝑄)𝑀𝑛𝑟𝑘

𝑛 𝜂3𝑘𝜌𝑘𝑟𝑘+[1−(1−𝜂2𝑘)𝑟𝑘)](1−𝜌𝑘)
 ,                                                                (6) 

 

where 𝛿𝑘 = 𝛾𝑘03√
1

𝜔0𝑘
2 +𝜏𝑘

2. The df of the t-test are 𝑑𝑓 = 𝑀 − 𝑣 − 4. The power of a two-tailed t-

test for a specified significance level α is  

 

p = 1 – Η [c(α /2, df), df, λ] + Η [-c(α /2, df), df, λ],                                           (7) 

 

where c indicates a critical value and H the cumulative distribution function.    

 

Illustrative Example  

To demonstrate the applicability of the methods we utilize an example of a three-level 

longitudinal design with a binary moderator at the top level.  

Suppose a researcher wants to examine whether the effects of a school assessment program 

on students’ reading achievement are moderated by school urbanicity (rural versus urban 

schools). Suppose this is a longitudinal three-level CRT design (e.g., measurements nested 

within students nested within schools) where schools are randomly assigned to treatment or 

control conditions and student measurements are collected for four years. A three-level model is 

used to evaluate whether the effect of the assessment program on the linear rate of change in 

reading achievement differs between rural and urban schools. The treatment, the moderator, their 

interaction, and one covariate are included in the third level.   

Suppose the design is balanced (P = 0.5) and there are 40 schools and within each school 20 

students. Following prior work (Li & Konstantopoulos, 2017), suppose the reliability and ICC 

are 𝑟1 = 0.664, 𝜌1 = 0.117 respectively. Also, suppose 𝜂31 = 𝜂21 = 0.500, 𝛿1 = 0.400, half of 

the schools are rural schools (Q = 0.5), and the significant level is set at 0.05. Then, the non-

centrality parameter of a two-tailed t-test using equation (6) is  

 

λ = 𝛿1√
𝑃(1−𝑃)𝑄(1−𝑄)𝑀𝑛𝑟1

𝑛𝜂31𝜌1𝑟1+[1−(1−𝜂21)𝑟1](1−𝜌1)
= 0.4 × √

0.5×(1−0.5)×0.5×(1−0.5)×40×20×0.505

20×0.5×0.117×0.664+[1−(1−0.5)×0.664](1−0.117)
= 1.971. 

 

The critical value of the t-test with 𝑑𝑓 = 40 − 5 = 35 is c(0.05, 35) = 2.030 and the power of 

the moderator effect is  

 p = 1 – Η [2.030, 35, 1.971] + Η [-2.030, 35, 1.971] = 0.483.  
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