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Abstract 
 

Background:  
Structural equation modeling (SEM) is commonly used to relate theoretical assumptions 

to data and compare models that make substantively different predictions about the causal 
relations among these variables. Model fit indices are commonly used to evaluate whether a 
specific model is plausible or which of a set of alternative models is most plausible. However, it 
is well-known that a variety of models that make drastically different, mutually exclusive, 
theoretical predictions, can show similar or identical fit indices (Kline, 2011; Tomarken & 
Waller, 2003). The general problem that plausible competing theories can make the same set of 
predictions, referred to as “underdetermination” of scientific theory in philosophy of science 
(Stanford, 2017), can in some cases be addressed by generating stronger, more specific 
predictions on which theories can be compared (Mayo, 2018; Meehl, 1990). 

 
Purpose: 

We propose incorporating causal predictions to evaluate the fit of developmental models. 
We adapt the within-study design approach to generate long-run forecasts of intervention effects, 
conditional on the short-run effects and a longitudinal model fit to the control group relating end-
of-treatment skills to later skills, and we derive an index of causal fit for these models fit to non-
experimental data. We investigate whether some models are found to be consistently causally 
informative across the datasets. In addition, we test the usefulness and validity of the index of 
causal fit by asking the following questions:  

1) Do traditional model fit indices and causally informative model fit indices yield 
similar patterns of results across conceptual replications?  

2) Are discrepancies between traditional model fit indices and causally informative 
indices consistent across conceptual replications? 
 
Data:  

We analyze use data from three randomized control trials of mathematics interventions 
for children in classrooms spanning preschool through fifth grade: the Technology-enhanced, 
Research-based, Instruction, Assessment, and professional Development study (TRIAD; 
Clements & Sarama, 2013), an evaluation of a Number Knowledge Tutoring program (NKT; 
Fuchs et al., 2013), and an evaluation of a preschool mathematics curriculum called Pre-K 
Mathematics (PKM; Starkey & Klein, 2012). These were chosen because they share several 
design features (shown in Table 1) necessary to make the models we intended to run identified, 
and compare results. Details about the designs, participants, and methods are shown in Table 2.  
 
Analyses:  

Figure 1 illustrates the within-study design which contains four steps. First, we estimated 
the causal effect of each treatment on the same outcome measure at the posttest (the parameter 
aexperimental in Figure 1) and all subsequent waves (cexperimental) by regressing the outcome measure 
on randomly assigned treatment status and all demographics and pretest covariates listed in 
Table 2. Second, we estimated the effects of earlier skills on later skills (bnon-experimental) using a 
variety of models (see Table 3) within the control group of each study. This parameter estimate 
can be interpreted as the estimated effect of a 1-unit boost to skill at time 1 (posttest at the end of 
treatment) to the same skill at time t (any subsequent wave following the end of treatment). 
Third, we projected the future impacts (cnon-experimental) by multiplying the end-of-treatment impact 
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(aexperimental) by the estimates of bnonexperimental yielded by each model, such that cnon-experimental = 
aexperimental * bnon-experimental. That is, the estimate of the effect of an intervention on a later outcome 
equals to the product of the effect of an intervention on early outcome and the estimate of the 
effect of the early outcome on the later outcome. Finally, for each model used to generate 
estimates of bnonexperimental, we computed an index of causal fit: the Causal Mean Squared Error 
(CMSE), based on the absolute deviations between the projected effects (cnon-experimental) and the 
observed causal effects (cexperimental). We calculated the mean of the squared differences between 
the observed impacts and the projected estimate at each wave, as shown in the formula: CMSE = 
∑( cexperimental - cnon-experimental)2/Number of total waves.  

Then we compared each model’s CMSE to its performance on traditional fit indices 
based on the variance covariance matrix. In all we estimated bnon-experimental using the following 
four models within each dataset: regression, AR (1), AR (2), RIAR (see Table 3).  
 
Results:  

Figure 2 presents the observed impacts, cexperimental, and projected impacts, cnon-experimental, 
on posttest and later math achievement in each dataset. The trajectories of the actual treatment 
impacts over time are displayed by the red lines in Figure 2. The projected impacts of different 
models are displayed using different colors.  

There are several regularities in the lines plotted in Figure 2. The correlation-based 
estimates of the treatment effect by the models show consistent patterns of bias across datasets. 
Some models consistently outperform other models at forecasting later experimental impacts. 
For example, the RIAR model consistently outperform the AR(1) and AR(2) models. The 
regression, AR(1), AR(2) models consistently overestimate the long-run treatment impacts.  

Table 4 summarizes the traditional SEM model fit indices and CMSE. The traditional fit 
indices and the index of causal fit are not perfectly related. Some of the models within the same 
dataset demonstrated inconsistent patterns with better (lower) CMSE but worse model fit indices 
as measured by (Kline, 2011).  

The inconsistent pattern of statistical and causal fit within each dataset is consistent 
across all three datasets. Figure 3 highlights the similar pattern of discrepancy between the 
CMSE and RMSEA of the models for each dataset. The AR(2) models consistently show a very 
good RMSEA ––often approaching zero–– but they have the highest CMSE and so are bad at 
predicting the observe effect in all three datasets. The RIAR models have good model fit and 
lower CMSE scores than the AR(1) and AR(2) models. Therefore, they are better predictors of 
causal impacts among the models.  
 
Conclusions:  

Theoretical underdetermination is a critical problem for psychologists who work with 
observational data. Here we propose another tool for further addressing the underdetermination 
problem by incorporating causal benchmarks into the model selection process. Supporting the 
validity and potential usefulness of this approach, we present evidence that this approach can 
identify models that consistently perform better than others for a narrowly defined problem, and 
that our index of causal fit contains information not supplied by a commonly used index of 
statistical fit. We hope others will attempt to create and refine indices of causal model fit and 
apply this general approach to other important questions within psychology. 
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Appendix B. Tables and Figures 
 
Table 1  
Design features shared across datasets and explanations 
Design feature Purpose 
Randomization to groups 
  

Strongly identified end-of-treatment impacts 

Intervention is specifically designed to increase end 
of treatment math skills 
 

Decreases potential biases from indirect effects 
of the treatment via unmeasured mediators  

At least 3 waves of data on key outcome measure 
(including pretest) 
  

Allows for the estimation of longitudinal models 
with latent intercepts 

a) Participants in preschool or the early school years 
in the U.S. 
b) Math achievement measure at each wave 
c) Approximately 1-year time lags between waves 
  

Reasonably comparable parameters being 
estimated across studies in longitudinal models 

Non-trivial end-of-treatment impact Analyses require multiplying estimated effects 
by end of treatment impact; null impacts will not 
allow to clearly differentiate among models 
  

Pretest covariates To statistically control for potential confounds 
influencing earlier and later math achievement 



 

 

Table 2  
Datasets used in the study 
 TRIAD NKT PKM 
Key citation Clements et al., (2013) Fuchs et al. (2013) Starkey & Klein (2012) 
Level of 
randomization 

Preschools (blocked) Within classrooms Preschool sites 
(blocked) 

Sample size 42 schools, 1,375 
students 

591 students 63 preschool sites, 744 
children 

Race/Ethnicity, 
FRPL status 

51% AA, 23% H, 85% 
FRPL 

69% AA, 20% 
White, 84% 
FRPL 

52% White, 18% H, 
17% AA, 100% FRPL 

Treatment group 
used in the study 

Building Blocks-No 
Follow Through 

Number 
Knowledge 
Tutoring (NKT) - 
Speeded Practice 

Pre-K Mathematics 

Waves (attrition 
rate from pretest) 

F PK (pretest), S PK 
(posttest), S K, S G1, 
F G4, S G4, F G5 

G1 (pretest and 
posttest), G2, G3 

F PK (pretest), S PK 
(posttest), S K, S G1 

Covariates    
Demographics  gender, ethnicity, age, 

FRPL, ELL, SE, 
mother's education 

gender, ethnicity, 
FRPL 

gender, ethnicity, ELL, 
Head Start Program  

Pretests  REMA FCR, KeyMath-
Numeration, 
WRAT-Reading, 
Nonverbal 
Reasoning, 
Processing Speed, 
WM-Listening 
Recall, WM-
Counting Recall, 
Listening 
Comprehension, 
Attentive 
Behavior 

TEMA, WJ Letter-
Word Identification, 
Spelling, and 
Understanding 
Directions subtests 

Mathematics 
achievement 
outcomes 
measures 

REMA (PK-1), TEAM 
3-5 (G4-5) 

FCR  TEMA (pre-k pre, post, 
K, grade 1) 

End of Treatment 
Impacts 

REMA (.56 SD) FCR (.40 SD) TEMA (.33 SD) 

Notes. FRPL = Free or Reduced-Price Lunch eligibility, ELL = English Language Learner 
status, SE = Special Education status, AA=African American, H=Hispanic, F=Fall, 
W=Winter, S=Spring, G=Grade, PK=Pre-k, WJ = Woodcock Johnson, WM = working 
memory, FCR = Facts correctly retrieved, TEMA = Test of early mathematics ability , 
REMA =  Research based early mathematics assessment.
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Table 3  
SEM models used in the study 

Model Picture  Advantages Disadvantages 

Regression 

 

• Flexible, does not impose functional form on pattern of 
impacts across time 

• Limited to linear relations 
• Possible omitted variable bias due to unmeasured confounds 

and measurement error in covariates 

AR(1) 
model 
 

 
• Only requires 2 waves of data 
• Does not require covariates 

• Without covariates, time- and domain-general omitted 
variable bias are major concerns 

• Implies exponential decay of correlations across time, which 
is unrealistic   

AR(2) 
model 
  

• Does not require covariates 
• Accounts for stability in correlations across waves 

•  Requires at least 3 waves of data 
• Without covariates, time- and domain-general omitted 

variable bias are major concerns 

RIAR model 
 

  

• Does not require covariates 
• Accounts for stability in correlations across waves 
• Models time-general confounds 

• Requires at least 3 waves of data  

Note. AR = Autoregressive, RIAR = Random Intercept Autoregressive, in each figure, c indicates coefficients constrained to be equivalent within 
a model. 
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Table 4  
Comparing traditional model fit indices and causal model indices 
Dataset Model CFI TLI RMSEA SRMR CMSE overall CMSE 1 year later CMSE other waves 
TRIAD AR(1) model 0.971 0.912 0.210 0.034 0.045 0.026 0.050 
  AR(2) model 0.999 0.998 0.019 0.012 0.059 0.009 0.072 
    RIAR model 0.968 0.952 0.105 0.085 0.003 0.007  0.002 
NKT AR(1) model 0.997 0.993 0.027 0.029 0.006 0.001 0.010 
 AR(2) model 1.000 1.006 0.000 0.010 0.007 0.000 0.014 
 RIAR model 1.000 1.019 0.000 0.006 0.003 0.000 0.006 
PKM AR(1) model 0.968 0.936 0.161 0.047 0.032 0.035 0.029 
 AR(2) model 1.000 1.004 0.000 0.000 0.023 0.018 0.029 
 RIAR model 0.989 0.968 0.110 0.031 0.006 0.009 0.003 
Notes. AR = Autoregressive, RIAR = Random Intercept Autoregressive, CMSE = causal mean squared error.  

CMSE =  ,  RMSEA = , where = model chi-square, N = sample size, and g= number 

of groups.  
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Figure 1. The within-study design used in the current study. The top panel presents cexperimental which is the casual effect of treatment on skill time 
t drawn from an experiment with random assignment to a treatment or control group. The effects of the top panel are compared to cnon-experimental  

in the bottom panel. The bottom panel demonstrates how we calculated the projected impact cnon-experimental.  The projected impact is the product 
of aexperimental (the observed effect of the treatment on skill time 1), and bnon-experimental (the estimated causal effect of skill at time 1 on skill at time 
t drawn from the control group). Therefore, cnon-experimental = aexperimental * bnon-experimental.  
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Figure 2. Observed impact (cexperimental) and projected impact (cnon-experimental) on later math achievement in each dataset. Note: The line Observed 
is the unbiased observed treatment effect (cexperimental). The lines Regression, AR(1), AR(2), and RIAR are the projected impacts cnon-experimental 
which is the product of the observed effect of the treatment on end-of-treatment math achievement (aexperimental) and the estimated effects (bnon-

experimental) of end-of-treatment math achievement on later achievement. AR = Autoregressive, RIAR = Random Intercept Autoregressive. 
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Figure 3. RMSEA and CMSE of models for each dataset. Note: AR = Autoregressive, RIAR = Random Intercept Autoregressive. 

 


