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1 Background

In this paper, we introduce a case-weighting scheme, Power-maximizing Weighting for
Repeated-measurements with Delayed-effects, constructed with the aim of increasing the
power of hypothesis tests for primary outcome analysis in randomized controlled trials
(RCTs). The longitudinal nature of many RCTs means researchers often possess multi-
ple observations on individuals but not necessarily the same number of observations on any
given indivudal. As a result, the weighting scheme applied can substantially determine the
ability to find an effect. Our scheme, referred to as PWRD weighting, addresses these issues
with repeated measurements by maximizing power for a broad class of interventions.

We illustrate this method on a large IES-funded RCT testing the efficacy of a reading
intervention designed to help K-3 students at risk of falling below grade level proficiency.
This intervention, which we call RSEG (Reading Support in Early Grades), is a "pull-out"
intervention providing targeted instruction to students who test below a certain benchmark
rather than the entire classroom. The theory behind RSEG maintains that effects are de-
layed, i.e. students do not receive an immediate benefit upon joining the intervention but
must "test in" first. Furthermore, RSEG maintains that effects are non-uniform and scat-
tered in that only students pulled out are affected; as a result, the treatment is anything but
constant when the intervention works in the intended manner.

2 Purpose

The primary objective of PWRD weights is constructing a method of weighting that maxi-
mizes the likelihood of rejecting a null hypothesis of no effect if a certain theory of intervention
is true. In particular, we provide a weighting scheme that increases power in expectation for
interventions where students are pulled out to receive targeted instruction.

3 Research Design

In educational settings, students often enter and exit the study at various points so in addition
to possessing repeated observations, we frequently see different numbers of observations for
different students as well. For example, RSEG examined a reading intervention on K-3
students across four years so the design looked as follows in Table 1 for the first of the four
cohorts.

Grade at Entry Year 1 Year 2 Year 3 Year 4

Cohort 1

3 3 - - -
2 2 3 - -
1 1 2 3 -
0 K 1 2 3

Table 1: Progression of Cohort 1 through the four years of the RSEG study.
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A natural question in scenarios like RSEG is how much weight to give each observation.
Even in the simplest outcome analysis where we only examine outcomes when students exit
the study, complications emerge. According to the theory behind RSEG, students are more
likely to benefit from the intervention when they participate for more time. As a result,
we are less likely to observe an effect in Cohort 1.3 than in Cohort 1.0. It should also be
noted that we do not assume students who test in during a given grade would have tested
in during the previous grade. Rather, fluctuations in student performance and learning may
cause students previously at grade-level reading to fall behind.

Perhaps the simplest way to make use of repeated measurements is to fit a linear model
predicting student-year observations from independent variables identifying the cohort and
time of follow-up before estimating standard errors of these coefficients with appropriate
attention to "clustering" by student or by school; in mixed modeling and general estimating
equations literature, this is known as the linear model with working independence structure
(Laird, 2004; Fox, 2015). These analyses effectively attach equal weights to each student
observation and thus we refer to them as "flat" weights. However, this weighting scheme
fails to take into account which observations will best help us detect an effect and some
power is lost.

Grade at Entry Year 1 Year 2 Year 3 Year 4 Difference

Cohort 1

3 3.33 - - - -
2 -0.63 -0.38 - - 0.25
1 1.44 6.57 2.16 - 0.72
0 -5.33 3.74 1.18 3.45 8.78

Table 2: Difference in means between treatment and control groups for the first cohort of students.

This is especially true when effects are delayed rather than instantaneous as in RSEG
where students only receive the intervention once they "test in". We see this play out in Table
2 for the first cohort of students. While there is some random variation, we generally see
larger differences between treatment and control means as students participate in the study
for longer. PWRD weighting looks to address this issue with repeated measurements and
non-instantaneous effects by building around the theory that the longer students participate
in a study, the more likely they will be to receive an effect. In other words, the expected
size of the effect at time t will be proportional to the percentage of students who directly
received the intervention by time t.

3.1 PWRD Weighting

Let X range over the ten measurement opportunities depicted in Table 1. Now take some
hypothesis test of no-effect such that each of

E(∆t) = E(Y1t − Y0t|X = x)

for time t = 1 . . . T is zero or negative against the alternative that one or more of these
treatment effects is positive. If the following assumptions about the theory of the intervention
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hold, PWRD weights will maximize power in the resulting test in expectation:

• Individual i receiving the intervention at time j gains a homogenous non-negative effect
τij at some point between j and when they exit the study. Individuals who do not
receive the intervention are unaffected.

• Effect τij is retained by individual i throughout the duration of the study, i.e. from
[j, T ].

The slope of the test statistic will be maximized by weights of the following form:

w = α · Σ−1p0

where α represents some positive constant, Σ := Cov{(∆(Z=1,t) − ∆(Z=0,t) : t)}, and
p0t := P(student in control would ’test in’ to the treatment by time t|X = x).

We do not apply any covariate adjustment under this formulation, but can amend that
through the approach outlined in Lin et al. (2013) or through application of a Peters-Belson
method (Peters, 1941; Belson, 1956) when estimating Σ. Other adjustments can extend this
into an attributable effects setting (Rosenbaum, 2001).

4 Results

We compare the power under our weighting scheme with the power under both "flat" weight-
ing and hierarchical linear models in a simulation study on RSEG data generating effects as
follows:

YCijk = β0 + β1Gradeijk + µi + εijk

µi = γ0 + ωi.

Effects are imposed on treatment observations in a manner following the theory of "pull-out"
interventions outlined previously.

In Figure 1, we see preliminary results of the power under three different weighting
schemes. It is immediately apparent that PWRD weights outperform the other methods.
This is unsurprising since PWRD weights attach greater importance to student observations
most likely to receive an effect, thus leading to more power. This holds for both smaller and
larger effect sizes.
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Figure 1: Power for the three weighting schemes across increasing effect sizes.

5 Conclusions

In this paper, we construct a weighting scheme that aims to maximize power in expectation
for "pull-out" interventions. When the theory behind these interventions holds, PWRD
weights provide greater power to detect an effect than many weighting schemes applied in
commonly used software. We demonstrate this through a simulation study on a large-scale
randomzied trial for a K-3 reading intervention.
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