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1 Abstract

Doubly robust (DR) estimators that combine regression adjustments and inverse probabil-
ity weighting (IPW) are widely used in causal inference with observational data because
they are claimed to be consistent when either the outcome or the treatment selection model
is correctly specified (Scharfstein et al., 1999). This property of double robustness is de-
sirable in educational research because researchers often lack strong subject matter theory
for choosing the correct functional form of the relationship between the outcome and the
covariates or between the propensity score and the covariates. In this case, DR estimators
provide additional protection and thus help reduce confounding bias. In the original papers
on DR estimators, the same set of covariates is used in both models to prove the double ro-
bustness property. However, in practice empirical researchers often use different covariate
sets for the two models because they select the covariates for each model separately, either
using subject matter theory or statistical techniques like stepwise regression (Lee et al.,
2011; Wilson and Chermak, 2011). In such a situation, the conditions for DR estimators
to be consistent become more complex. Even with two correctly specified models, the DR
estimator can still be biased and inconsistent, but this issue has not been noticed.

We demonstrate that the consistency of DR estimators relies on an implicit condition:
the covariates in the outcome model and the selection model must be identical. That is,
DR estimators guarantee protection against incorrectly specified functional forms given
a set of covariates, but they do not guarantee robustness to deliberate variable selection.
This issue is important because many researchers, even some methodologists, are not aware
of it. Some methodological papers demonstrate the properties and implementation of DR
estimators through examples or simulations, but with different sets of covariates for the
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outcome and selection model, resulting in misleading guidance because double robustness
is no longer guaranteed (Glynn and Quinn, 2010; Funk et al., 2011; SAS Institute Inc,
2017). It is also worth noting that DR estimators have already been implemented in
several statistical packages, but they usually allow users to specify different covariate sets
for the two models (Funk et al., 2007; Emsley et al., 2008; Zetterqvist and Sjölander,
2015; SAS Institute Inc, 2017). Users should be warned that they must include the same
covariates in both models to guarantee the double robustness property.

This paper reviews two classes of commonly used DR estimators. (1) The augmented
inverse probability weighted (AIPW) estimator, relies on independently estimated out-
come and selection models (Bang and Robins, 2005); (2) The inverse probability weighted
regression (IPWR) estimator, uses inverse-probability-of-treatment weights to fit the out-
come model (Schafer and Kang, 2008). We use both formal theoretical derivations and
simulation results to demonstrate under which conditions double robustness breaks down
despite a correctly specified outcome or selection model.

Then, we provide sufficient conditions for DR estimators to be consistent when the two
models use different covariates (see Table 1 for the formal results). These conditions are:
(a) the joint set of covariates used in the outcome and selection model satisfies the strong
ignorability assumption, and (b) at least one of the two models is correctly specified with
respect to all covariates in the joint covariate set. The key is that the covariates dropped
from the bias-removing outcome model must not be predictive of the outcome, or the
covariates dropped from the bias-removing propensity score model must not be predictive
of treatment selection. Importantly, the condition is only about prediction and not about
causal relations. However, as already mentioned, this complexity can be avoided by using
the same set of covariates in both models.

To illustrate these results in a more intuitive way, we present simulation results from
a simple data generating process (Figure 1) in Table 2 and Table 3. Since both functional
forms are correctly specified, any remaining bias is due to variable selection. DR estimators
can be inconsistent even though both the outcome and selection model may remove the
entire bias on their own, as shown in the last column of Table 2. Table 3 shows that collider
bias produces inconsistent estimates even when one model is correct.

To summarize, using different covariate sets in DR estimators may cause serious prob-
lems because the outcome and selection model interfere with each other.

Nonetheless, it is good practice to use DR estimators for causal inference in educational
research for they provide protection against incorrectly specified functional forms, but
researchers should carefully choose a single covariate set for both the outcome and the
selection model.
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2 Tables

Table 1: Sufficient conditions for consistency. A and B are covariate sets for the outcome
and the propensity score respectively, Y 0 and Y 1 are potential outcomes, Z is the treat-
ment indicator, mz(·, α̂z) is the postulated model for Y z where α̂ is the estimator of the
coefficient for z = 0, 1, e(·, β̂) is the postulated model for the propensity score where β̂
is the estimator of the coefficient. For each estimator, the condition for consistency has
two parts: the covariate set satisfy the strong ignorability assumption, and the functional
forms are correct.

Estimator Strong Ignorability Functional Forms

Regression A for outcome mz(A, α̂z)
p−−→ E(Y z|A)

IPW B for selection e(B, β̂)
p−−→ E(Z|B)

DR X = A ∪B
mz(A, α̂z)

p−−→ E(Y z|A) = E(Y z|X)

or e(B, β̂)
p−−→ E(Z|B) = E(Z|X)

Table 2: Biases of estimates with 95% simulation confidence intervals when both models
are correctly specified. In the first three cases all the estimators are consistent, but in the
last case the two DR estimators are inconsistent even though the corresponding outcome
model and the selection model are both correct on their own.

Covariates for Y {W,V } {W,V,M} {W,U} {W,U,M}

Regression
0.000 0.000 0.000 0.000

(−0.004, 0.005) (−0.005, 0.004) (−0.005, 0.005) (−0.004, 0.005)

Covariates for Z {W} {W,U} {W,V } {W,V,M}

IPW
0.000 0.000 0.000 0.000

(−0.004, 0.005) (−0.005, 0.005) (−0.004, 0.005) (−0.004, 0.005)

All Covariates {W,V } {W,U, V,M} {W,U, V } {W,U, V,M}

AIPW
0.000 0.000 0.000 0.052

(−0.004, 0.005) (−0.004, 0.005) (−0.004, 0.005) (0.048, 0.057)

IPWR
0.000 0.000 0.000 0.053

(−0.004, 0.005) (−0.004, 0.005) (−0.005, 0.004) (0.048, 0.057)
∗ Prima facie estimator: 0.299 (0.294, 0.304)
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Table 3: Biases of estimates with 95% simulation confidence intervals when one model is
incorrect due to colliders. In all the four cases one model is correctly specified while the
other model leads to inconsistent estimators due to collider bias, and the two DR estimators
are inconsistent.

Covariates for Y {M} {W,M} {W,U} {W}

Regression
0.172 −0.144 0.000 0.000

(0.167, 0.177) (−0.149,−0.140) (−0.005, 0.005) (−0.004, 0.005)

Covariates for X {W} {W,V } {M} {W,M}

IPW
0.000 0.000 0.175 −0.142

(−0.004, 0.005) (−0.004, 0.005) (0.170, 0.179) (−0.146,−0.137)

All Covariates {W,M} {W,V,M} {W,U,M} {W,M}

AIPW
−0.134 −0.144 −0.132 −0.142

(−0.138,−0.130) (−0.149,−0.140) (−0.137,−0.128) (−0.146,−0.137)

IPWR
−0.134 −0.145 −0.135 −0.142

(−0.138,−0.129) (−0.149,−0.140) (−0.139,−0.130) (−0.146,−0.137)
∗ Prima facie estimator: 0.299 (0.294, 0.304)

3 Figures
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Figure 1: Causal relationship among variables. There are three paths between Z and Y :
Z → Y , Z ← W → Y and Z ← U → M ← V → Y . The first is the only causal path
and the effect to be estimated. The second path results in confounding bias because of the
confounder W . The third path is naturally blocked because of the collider M , but will be
open if M is conditioned on.
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