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Background 

Problems of causal generalizations are becoming increasingly prominent in methodological 

research in education. This reflects concerns about the narrow applicability of average treatment 

effect findings, and the policy priority to better understand which programs work better for 

whom and under which conditions (Bryk, 2014; Tipton and Olsen, 2018).  

Several approaches to casual generalization have emerged in education and related fields. They 

include the “heterogeneity of replication approach” (Shadish, Cook and Campbell 2002; Cook 

2002), methods of reweighting (such as by Tipton, 2013) and G theory (Cronbach, Rajaratnam, 

and Gleser, 1963; Shavelson & Webb, 2008). Moderators of impact play a central role in each of 

these methods. Analysis-based solutions (as opposed to design-based solutions) to problems of 

causal generalization require identifying and addressing effects of effect moderators. For 

example, to satisfy the sampling ignorability assumption, reweighting methods depend on 

identifying and adjusting for effects of moderators of impact that are imbalanced between study 

and inference population, (Tipton and Olsen, 2018).  

What is currently missing in the field, and what this work addresses, is an empirical framework 

for testing the accuracy of generalized casual inferences. That is, we require empirical tests of 

how effective adjusting for moderators is at producing accurate generalizations.  

In this work, we empirically evaluate the capacity of moderators of impact to account for effect 

heterogeneity that places limits on external validity of casual inferences. The method is based on 

a framework for evaluating replicability of casual effects across sites of a multisite trial. Due to 

the brevity of this proposal, we append discussion of the framework itself. (We consider it a 

contribution in its own right that formalizes the connection between effect heterogeneity and 

generalizability.) We focus instead on empirical tests motivated by the framework: they boil 

down to assessing the level of variation in program impact across sites of a trial, and potential for 

its reduction through modeling effects of moderators.   The work is consistent with the SREE 

theme of “Practical Significance” and “Communicating What Matters” as the goal of the work is 

an empirical solution for advancing accuracy of generalized causal inferences.  

Method: Estimation and Research Questions 

Raudenbush & Bloom (2015) argue that in the context of making generalizations to a population 

of sites, a natural cross-site impact heterogeneity parameter of interest is the mean squared 

difference between the site-specific impacts and the cross-site average mean impact.  

Bloom, Raudenbush, Weiss, and Porter (2017), Weiss et al. (2017), and Weiss, Miratrix, and 

Henderson (2019) discuss that an HLM-based “fixed intercept, random (treatment) coefficient” 

(FIRC) estimator that produces consistent estimates of this parameter. A second similar approach 

uses an HL model with random intercepts instead of fixed intercepts; that is, a “random intercept, 

random (treatment) coefficient” (RIRC) estimator.  
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In this work we examine levels of impact heterogeneity and trends in its reduction using both 

approaches to estimation. Due to the word limit we describe the underlying HL models in 

Appendix B. With both FIRC and RIRC we estimate impact variation across sites net of 

individual-level sampling variation prior to modeling any moderating effects, and after inclusion 

of specific sets of site-level moderators.   

Our research questions are: 

1. In the context of a multisite trial, what is the level of cross-site impact heterogeneity 

expressed in standardized units (𝐼𝐻𝐸𝑆
∗ (𝐹𝐼𝑅𝐶) =

√𝜏1
∗

𝑠𝑑
) before adjusting for the effect of any 

moderators? (This quantity is “Impact Heterogeneity” (IH) expressed as a standardized 

effect size (ES) based on FIRC estimation, where 𝜏1
∗ is impact variation across sites, sd is 

the standard deviation of the outcome variable.)    

2. What are the levels after adjusting for the effect of moderators grouped in terms of site 

averages of student covariates, site averages of teacher covariates, site-characteristics, 

and combination of these covariate types?  

3. Are the reductions in (2) statistically significant when compared to the magnitude of 

heterogeneity in (1)? 

4. Is the level of heterogeneity and trends in its reduction from modeling effects of 

moderators similar when we estimate FIRC and RIRC?   

Intervention, Sample and Data 

Impacts are assessed for 40 sites with over 10,000 students total. The intervention is an inquiry-

based program that uses hand-on instruction to increase students’ science, math and literacy 

skills. The program was implemented over the course of one school year in grades 4 – 8. We 

focus on the reading outcome as assessed through the SAT-10 reading test. Covariates and 

models assessed are shown in Table 1. 

Table 1. Models assessed with sets of moderators explored. 
Site-level covariates Model (Moderator Effects Included)  

 1 2 3 4 5 6 7 8 9 

Teacher 

factors 

Math / Science Degree Ranks     X X   X 

Years Teaching     X X   X 

Adopt Constructivist Principles Math     X X   X 

Adopt Constructivist Principles 

Science 

    X X   X 

Student 

factors 

Average pretest  X  X  X  X X 

Proportion Male   X X  X  X X 

Proportion Free or Reduced Price 

Lunch 

  X X  X  X X 

Proportion Minority   X X  X  X X 

Proportion English Learner   X X  X  X X 

Proportion in grades 4-8   X X  X  X X 

Site 

factors 

Region       X X X 

Locale       X X X 

Number of students per site       X X X 
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Results 

Findings are summarized in Figure 1 and Table 2. 

1. We observed similar levels of impact heterogeneity before adjustment for effects of site-

level moderators, with estimates of 𝐼𝐻𝐸𝑆
∗ , of .091 for FIRC and .106 for RIRC.  

Corresponding variance components, 𝜏1
∗ , are statistically significant (p<.001). 

2. Inclusion of moderating effects of all variables combined (Model 9), or of site or regional 

characteristics and site averages of student covariates (Model 8) accounted for close to all 

or all effect heterogeneity. With RIRC in particular, modeling individual sets of 

covariates (e.g., student-only, or teacher-only) led to smaller reduction in heterogeneity, 

while combining sets (e.g., student and teacher moderators) was more effective at 

reducing impact variation.  

3. Significance of reductions in heterogeneity compared to the initial magnitude of 

heterogeneity are shown in Table 2.  

4. There are similarities between FIRC and RIRC in heterogeneity and trends in its 

reduction from modeling effects of moderators; RIRC also seemed to give more finely-

graded results.   

 

 

 
 

Figure 1. FIRC and RIRC estimates of levels of effect heterogeneity prior to and following 

adjustment for effects of moderators of treatment impact  
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Conclusions 

In this study external validity bias was .10 SD and statistically significant before any adjustment. 

This is not a trivial amount, if we assume empirical benchmarks for the importance of effects. 

However, impact heterogeneity (and, correspondingly, external validity bias) were reduced to 

zero with inclusion of all available covariates with FIRC and RIRC. The results also hold 

promise that generalization tools such as the Generalizer (Tipton and Miller, 2015) can reduce 

bias, as combinations of pretest with site-based covariates (variables like those from publicly 

available datasets that the Generalizer uses) led to complete or almost complete reductions in 

bias.    

   

Table 2. FIRC and RIRC estimates and tests of hypotheses concerning random effects 

FIRC Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

1 𝐼𝐻𝐸𝑆
∗ (𝐹𝐼𝑅𝐶) =

√𝜏1
∗

𝑠𝑑
 

 

0.091 0.097 0.080 0.000 0.070 0.000 0.000 0.000 0.000 

2 
Deviance (degrees of 

freedom) 
 

 1.4 (1) 6.1 (8) 6.7 (9) 13.3 (8) 40.2 (17) 5.7 (9) 53.7 (18) 89.4 (26) 

3 𝐻0: 𝜏1
∗ < 𝜏1

∗
(Model 1) 

 
-    * ****  **** **** 

4 𝐻0: 𝜏1
∗ = 0 

 
*** *** ***  **     

 RIRC          

5 𝐼𝐻𝐸𝑆
∗ (𝑅𝐼𝑅𝐶) =

√𝜏1
∗

𝑠𝑑
 0.106 0.084 0.095 0.054 0.087 0.032 0.087 0.012 0.000 

6 
Deviance (degrees of 

freedom) 
 

- 1.1 (1) 5.4 (8) 15.7 (9) 11.1 (8) 38.6 (17) 7.0 (9) 40.8 (18) 67.4 (26) 

7 𝐻0: 𝜏1
∗ < 𝜏1

∗
(Model 1) 

 
-   *  ***  *** **** 

8 𝐻0: 𝜏1
∗ = 0 

 
**** *** *** ** *** * ***   

 

*p<.10, **p<.05, ***p<.01, ****p<.001 
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Appendix A: A Framework for Evaluating the Generalizability of Causal Effect Estimates 

from Experiments 

 
Our framework is a direct extension of Within Study Comparison (WSC) approach traditionally used 

to empirically test the success of Quasi-Experimental Designs (QEDs) at replicating Average 

Treatment Effect estimates from experiments (Lalonde, 1985; Fraker and Maynard, 1986). WSC 

compares analysis-based (QED) solutions against benchmark design-based solutions (from RCTs). 

The goal is to identify a valid counterfactual – as good as an experimental control – through analytic 

strategies. Put another way, WSC assesses if the ignorability assumption is met. WSC efforts 

spanning several decades have evaluated the success of (1) models, (2) covariates, and (3) sampling 

choices, at increasing accuracy of QED-based impact findings.  

Our extension of the approach, which we refer to as e-WSC, evaluates whether adjusting for 

moderators of impact allows accurate extrapolation of causal impact findings from sample to 

inference population. The goal of e-WSC is to replicate a known impact quantity at an inference site 

through adjustment of impact quantities from other study sites.   

We adopt a variant of the WSC that uses a multisite trial to evaluate whether impact at a given site 

can be replicated using impact quantities at other sites. This variant is referred to as a “1 versus N-1” 

or “one-out” strategy because the goal is replication of impact at a given (“one out”) site j using 

results for N-1 other sites, and this can be done N times (i.e., with each site taking a turn being the 

inference site.) 

The Framework 

Assume an N-site trial. Our goal is to predict impact at site j=a, using performance outcomes from N-

1 other sites. The steps of the process are described in Table A1 below, with corresponding 

quantitative expressions in Table A2. 

Table A1. Steps in “one out” e-WSC  

Step Goal 

1 Estimate the unbiased impact quantity at inference site 𝑗 = 𝑎: 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎), where ∆𝑖is the 

difference in potential outcomes for individual i:  ∆𝑖= 𝑦𝑖(𝑇 = 1) − 𝑦𝑖(𝑇 = 0). (The goal of e-

WSC is to replicate this target of inference; that is, impact at site j=a.) (Quantity 1 in Table 2.) 

2 Assume an experiment has not been conducted at inference site j=a; therefore, generalize impact 

for that site using the average of impacts across the remaining N-1 study sites: 

𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1, 𝑗)) (quantity 2 in Table 2) 

3 Calculate external validity bias (EVB) in the inferred quantity for site j=a as 

𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1, 𝑗)) − 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎) (Quantity 3 in Table 2).  

4. Summarize average absolute EVB as the root squared difference of this quantity (Quantity 4 in 

Table 2).  

5 Calculate the root mean squared difference in expectation over all N sites (i.e., where we assume 

each site takes a turn being an inference site.) (Quantity 5). 

6 We include Quantity 6 in Table 2 to show that equal weighting of sites in the grand mean impact is 

but one option. (A function “𝑔” indicates that other estimands, such as “precision weighted” 

averages, may also be used as the impact quantity inferred for a given site.)  
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Table B2. Quantitative components in an e-WSC analysis  

 Without covariate adjustments With covariate adjustments 

1.Impact for site 𝑗 = 𝑎 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎) 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎) 

2. Generalized impact 

quantity for site 𝑗 = 𝑎 

𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1, 𝑗)) 𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1,𝑋 = 𝑋𝑎 , 𝑗)) 

3. EVB in impact quantity 

inferred for site 𝑗 = 𝑎 

𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1, 𝑗)) − 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎) 𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1,𝑋 = 𝑋𝑎 , 𝑗))− 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎) 

4. Magnitude of EVB for 

site 𝑗 = 𝑎 
 [𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1, 𝑗))− 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎)]2   [𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1,𝑋 = 𝑋𝑎 , 𝑗))− 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎)]2  

5. Average magnitude of 

EVB across all sites  
 𝐸𝑗 {[𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1, 𝑗))− 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎)]2}   𝐸𝑗 {[𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1,𝑋 = 𝑋𝑎 , 𝑗))− 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎)]2}  

6. Generalized average 

magnitude of EVB  
 𝐸𝑗 {𝑔[[𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1, 𝑗))] − 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎))]2]}   𝐸𝑗 {[𝑔[𝐸𝑗≠𝑎(𝐸(∆𝑖|𝑇 = 1,𝑋 = 𝑋𝑎 , 𝑗))] − 𝐸(∆𝑖|𝑇 = 1, 𝑗 = 𝑎)]2]}  

  

Note: ∆𝑖  is the difference in potential outcomes for individual i: ∆𝑖= 𝑦𝑖(𝑇 = 1) − 𝑦𝑖(𝑇 = 0). EVB = “External Validity Bias”. 
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Appendix B: Models used to Estimate Effects 

 

For a given multisite trial, our first goal is to assess levels of impact heterogeneity across 

sites. Our second goal is to determine the extent to which adjusting for effects of moderators 

accounts for this variation.  

The first step in the estimation of cross-site variation in impacts is to define the estimand 

of interest. Raudenbush & Bloom (2015) argue that in the context of making generalizations to a 

population of sites, a natural cross-site impact heterogeneity parameter of interest is the mean 

squared difference between the site-specific impacts and the cross-site average mean impact.  

Bloom, Raudenbush, Weiss, and Porter (2017), Weiss et al. (2017), and Weiss, Miratrix, 

and Henderson (2019) discuss that an HLM-based “fixed intercept, random (treatment) 

coefficient” (FIRC) estimator produces consistent estimates of this parameter. They argue that 

among alternative estimators, including those that estimate this parameter using the distribution 

of site-specific impact estimates yielded by OLS or empirical Bayes methods, this estimator has 

the desirable property that it weights the average impact for each site in proportion to the 

precision with which that impact can be estimated. The distribution of OLS estimates of site-

specific effects confounds site-level estimation error with true impact variation and empirical 

Bayes estimators understate true cross-site impact variation.  

 

HLM Specifications 

 

Stage 1. The “base-model” for estimating impact heterogeneity. Following Weiss, 

Miratrix & Henderson (2019) and Weiss et al. (2017), we specify a base model for obtaining a 

FIRC estimate of impact heterogeneity:    

Level-1 (students):  

𝑦𝑖𝑗 = ∑ 𝛼𝑟𝑅𝐴𝐵𝑟𝑖𝑗
𝑅
𝑟=1 + 𝛽𝑗𝑇𝑖𝑗 + ∑ 𝛾𝑟𝑋𝑙𝑖𝑗

𝐿
𝑟=1 + 𝜀𝑖𝑗    (3) 

𝑦𝑖𝑗  is the outcome for student i at site j. 𝑅𝐴𝐵𝑟𝑖𝑗 equals one if individual i from site j 

belongs to random assignment block r, and 0 otherwise. (This accommodates trials in which 

students are randomized within blocks within a site. If the site is the block, then R=j). 𝑇𝑖𝑗 takes 

values 0 or 1, indicating random assignment of individuals to control or treatment, respectively. 

Site-centered student-level baseline covariates, 𝑋𝑙𝑖𝑗, are included to improve the precision of 

parameter estimates.   

Level-2 (sites):  

 𝛽𝑗 = 𝛾1 + 𝑢1𝑗         (4)  

We assume the following: 

 𝜀𝑖𝑗~𝑁(0, 𝜎|𝑋,𝑅𝐴𝐵
2 )  

𝑢1𝑗~𝑁(0, 𝜏1
2) 

𝐶𝑜𝑣(𝜀𝑖𝑗 , 𝑢1𝑗) = 0 

 A quantity of main interest is the estimate of impact variation across sites:  

 𝜏1
2̂ = 𝑉𝑎𝑟(𝑢1𝑗)̂          (5) 

Note that the model above does not control (or adjust) for any moderators. Therefore, we 

consider this estimate as the unconditional or uncontrolled estimate of the cross-site impact 

heterogeneity. We can also estimate impact heterogeneity as the standard deviation of the 

distribution of impact variation and in units of the pooled standard deviation of the outcome; that 

is, in the metric of a standardized effect size:  
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𝐼𝐻𝐸𝑆 =
𝜏1

𝑠𝑑
         (6) 

IH stands for “Impact Heterogeneity” with subscript ES for “Effect Size”, and sd is the 

standard deviation of 𝑦𝑖𝑗. This metric has the advantage that is allows both a more direct 

comparison with the mean impact also expressed as an effect size, and a synthesis of such 

quantities across studies, as in meta-analysis. 

Stage 2. Specifying the “moderator-adjusted model” for estimating remaining impact 

heterogeneity. A second goal is to index impact heterogeneity conditional on interactions 

between site-level covariates and treatment. To do this, we retain the level-1 model (Equation 3) 

while introducing site-level covariates (posited moderators) in the equation for the coefficient for 

treatment. Specifically, we have at Level-2:   
 

𝛽𝑗 = 𝛾1
∗ + ∑ 𝛾1𝑝𝑋𝑗𝑝̅̅ ̅̅

𝑘
𝑝=1 + ∑ 𝛾1𝑟𝑍𝑟

𝑘+1+𝑙
𝑟=𝑘+1 + 𝑢1𝑗

∗       (7) 
  

The terms in Equation 7 are interacted with treatment assignment variable at Level-1 

(𝑇𝑖𝑗). The coefficients 𝛾1𝑝, and 𝛾1𝑟 represent the moderating effects of site-level attributes on the 

impact of the program on the outcome. They include site averages of k individual-level 

covariates, 𝑋𝑗𝑝̅̅ ̅̅ , (e.g., site averages of student pretest) and l site-level covariates. We are 

interested in (a) their effects individually, (b) their effects in specific combinations, and (c) the 

variance of 𝑢1𝑗
∗  which expresses the remaining heterogeneity in impact conditional on 

interactions in the model. That is, 𝑢1𝑗
∗  are site-specific deviations in impact after conditioning 

outcomes on the main effects of site-level covariates and their interactions with treatment. We 

are interested in the following estimate: 

 𝜏1
∗2̂ = 𝑉𝑎𝑟(𝑢1𝑗

∗ )̂          (8) 

As above, we are interested in heterogeneity expressed in the metric of a standardized  

effect size; that is, we will estimate the following quantity:     

𝐼𝐻𝐸𝑆
∗ =

𝜏1
∗

𝑠𝑑
         (9) 

 

In this work we also present results of “random intercept, random (treatment) coefficient” 

(RIRC) estimation. The HL models are analogous to ones above and the procedure of adding 

moderator effects is the same. RIRC differs from FIRC in that instead of modeling fixed 

intercepts, differences across sites in average achievement are captured through a site-level 

random effect.        

 

 


