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Background/Context: 

Experimental studies are considered the gold standard for evaluating the causal impact of a 

program or intervention. For the past 8 years, statisticians have developed methods to formally 

address a growing interest in the generalizability of experimental results; namely, the expected 

intervention impact for a specified population of inference (Stuart et al., 2011; Tipton, 2013; 

O’Muircheartaigh & Hedges, 2014; Chan, 2017). These methods focus on improving the 

generalizability of results when the study sample is not randomly selected from the population. 

These methods are based on propensity scores, which estimate the conditional probability of 

study selection given a set of observable covariates. Since their development, propensity scores 

have made an important contribution to improving generalizations through their use in matching 

and reweighting approaches.  

Purpose/Research Questions: 

Generalization research thus far has focused on populations that are defined in a cross-sectional 

setting; namely, for educational studies, the target population is typically defined for the same 

academic year. The purpose of this project is to evaluate whether the generalizability of a study’s 

results potentially changes over time. Specifically, we consider the context in which there are 

multiple populations of inference, each corresponding to a different academic year, and assess 

the compositional similarity (or difference) between the study sample and each population. Our 

project addresses the following research questions: 

1. How does the composition of a population change, in relation to a study sample, over 

time and what are the implications for the generalizability of the study’s results? 

2. What is the “pace” at which the population composition changes? 

Setting/Population: 

Our project uses data from SimCalc, a cluster-randomized trial (CRT) that evaluated the 

effectiveness of a technology-based curriculum on mathematics achievement among seventh-

grade students in Texas (Roschelle et al., 2010). The population of inference is specified as all 

public Pre-K to Grade 12 schools in Texas. The original study sample consisted of 92 schools, of 

which 45 were randomized to treatment (SimCalc) and the other 47 to control. 

Data Collection and Analysis:  

We constructed a population data frame using the Academic Excellence Indicator System and 

Texas Academic Performance Report. Data was collected on 26 covariates, which included 

aggregate measures of demographic and academic achievement variables. To address our 

research questions, the population data frame ranged from 2008 – 2009 (the year in which 

SimCalc was conducted) to 2016 – 2017 where each academic year represents a separate 

inference population. Because of initial inconsistencies in the data, the final dataset (across all 

years) comprised of 936 population schools and 63 study schools. 

We used the generalizability index (B-index; Tipton, 2014) and the distributional overlap in the 

estimated propensity scores to assess the similarity between the study samples and each 

population of inference. The B-index ranges from 0 to 1 and following Tipton (2014), we used 

the following four ranges to assess generalizability: 1.00 ≤ B ≤ .90; very high; .80 ≤ B ≤ .90; 

high; .70 ≤ B ≤ .50; middle; B < .50; low. Overlap refers to the proportion of population schools 



whose propensity scores lie in the range of the propensity scores of the sample. For all academic 

years, we estimated the propensity scores using logistic regression. 

The analysis was conducted in three stages. First, generalizability statistics (the B-index and 

overlap) were estimated for all nine years using a propensity score model based on the original 

26 covariates. Because of changes in the Texas state exam in 2011 – 2012, there was a 

significant amount of variability in the propensity scores for certain years. As a result, our 

second stage involved refitting the propensity score model on a subset of covariates and re-

computing the generalizability statistics. Lastly, the third stage considered the generalizability of 

the study sample to a smaller population that consisted of urban schools in Texas for each 

academic year. The purpose of this last comparison is to assess whether the values and changes 

in the generalizability statistics differ at a more local level of generalization. 

Preliminary Findings: 

Tables 1 – 3 provide the results for each analysis. From Tables 1 and 2, the generalizability 

between the SimCalc sample (63 schools) and population is highest in 2008 – 2009, the same 

year in which the study was conducted. Table 1 illustrates that there are convergence issues in 

the propensity score model, likely due to changes in the Texas statewide testing system. 

Variables such as the percentage of students in the disciplinary alternative education program 

(DAEP) have different distributions in specific years, where the median value is 0.20 for 2009 – 

2010, but it is 0.03 for the other years (excluding 2009 – 2010). Table 2 provides the results 

when these variables are excluded. The trends in the B-index and overlap suggest that the 

generalizability of the SimCalc sample immediately declines in the years following the study, but 

the largest decline begins to happen three years after the study. In particular, the B-index 

decreases from 0.92 to 0.69 in 2011 – 2012. Interestingly, the B-index remains in the “Middle” 

range even after eight years as seen in 2016 – 2017. These changes are also reflected in the 

overlap whose value is the highest in 2008 – 2009 at 0.92 and drops to the 0.70 range in 2016 – 

2017.  

The inference populations for Table 3 consisted of all Texas urban schools. Like Table 2, the B-

index and overlap between the SimCalc sample and the urban population are highest in 2008 – 

2009. However, the generalizability statistics are lower in this population compared to the 

populations in Table 2. Additionally, the values of the generalizability statistics decrease at a 

faster rate for the populations in Table 3, implying that there is a growing dissimilarity in 

propensity scores between the SimCalc schools and Texas urban schools with each successive 

year. Furthermore, the overlap in propensity score distributions is nearly 58% smaller in 2016 – 

2017 for the urban schools compared to its value for the same year in Table 2. However, despite 

the faster changes, the B-index is still considered “Middle,” albeit on the lower end of the range, 

after eight years in 2016 – 2017.  



Table 1. Generalizability statistics (26 covariates) 

a. Fitted probabilities numerically 0 or 1 occurred  

b. The algorithm did not converge. 

Note. The propensity score model is based on the following covariates: percentage of English learners, percentage of African 

American Students or Hispanic students, percentage of students who are at risk, percentage of students who are in disciplinary 

alternative education program(DAEP), total number of full time equivalent teacher (FTE), percentage of beginning/1-5 years/ 6-10 

years/ 11-20 years/ more than 20 years  teachers, average teachers’ years of experience within school and as total, percentage of 

African American teacher or Hispanic teacher, school size, grade 7 retention rate, student mobility rate, teacher/student ratio, average 

size of math class, percentage of students who meet the standard in all subjects/mathematics, percentage of students who meet the 

advanced standard in all subjects/mathematics, percentage of grade 7 students who meet the standard in reading. “Decision” refers to 

the category for the range in which the B-index falls.  

Year 
SimCalc 

0809 

SimCalc 

0910 ab 
SimCalc 

1011 

SimCalc 

1112 

SimCalc 

1213 ab 

SimCalc 

1314 ab 

SimCalc 

1415 ab 

SimCalc 

1516 ab 

SimCal 

1617 ab 

B-index 0.91 0.34 0.52 0.41 0.00 0.00 0.17 0.00 0.00 

Decision Very High Low Middle Low Low Low Low Low Low 

Overlap 0.9119 0 0.5843 0.7850 0 0 0 0 0 



Table 2. Generalizability statistics of covariates balance (20 covariates) 

Note. The following covariates were excluded from this model: percentage of students who are in disciplinary alternative education 

program (DAEP), percentage of students who meet the standard in all subjects/mathematics, percentage of students who meet the 

advanced standard in all subjects/mathematics, percentage of grade 7 students who meet the standard in reading. 

 

 

Table 3. Generalizability statistics for the population of urban schools (20 covariates) 

Year  

SimCalc 

0809 

SimCalc 

0910 

SimCalc 

1011 

SimCalc 

1112 

SimCalc 

1213 

SimCalc 

1314 

SimCalc 

1415 

SimCalc 

1516 

SimCal 

1617 

B-index 0.86 0.78 0.75 0.62 0.59 0.68 0.66 0.61 0.51 

Decision High Middle Middle Middle Middle Middle Middle Middle Middle 

Overlap 0.8131 0.7828 0.7626 0.5758 0.5227 0.5758 0.4697 0.3838 0.3207 

Note. The populations of inference consist of 396 urban schools located in the major cities of Texas. 

Year 
SimCalc 

0809 

SimCalc 

0910 

SimCalc 

1011 

SimCalc 

1112 

SimCalc 

1213 

SimCalc 

1314 

SimCalc 

1415 

SimCalc 

1516 

SimCal 

1617 

B-index 0.92 0.87 0.84 0.69 0.69 0.75 0.73 0.72 0.65 

Decision Very High High High Middle Middle Middle Middle Middle Middle 

Overlap 0.9119 0.8789 0.8749 0.7758 0.7838 0.8078 0.7708 0.7958 0.7578 
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