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Background

Multisite randomized controlled trials (MSTs) are an appealing design for testing educational

programs at scale because they “can be regarded as a ‘fleet’ of randomized experiments”

(Raudenbush and Bloom, 2015, p. 477) or a “planned meta-analysis” (Bloom et al., 2017,

p. 818). One popular MST design is a block-randomized controlled trial, where individu-

als within each block are randomized to treatment and control groups, like when students

within each of several schools are randomly assigned to a new educational program (Gerber

and Green, 2012). The results across multiple sites can be collected to estimate the aver-

age effect of the program and the treatment effect heterogeneity across sites (Bloom, 2005;

Raudenbush and Bloom, 2015). Understanding how effects of an educational program natu-

rally vary across sites is an important step toward better understanding in what populations

and contexts the treatment is most effective and what features lead to effective programs

(Raudenbush and Bloom, 2015; Zvoch, 2016; Reardon and Stuart, 2017; Olsen, 2017).

Estimating average treatment effects is straightforward when all individuals comply with

their random treatment assignment, but this does not always occur. When this randomiza-

tion is broken, a common analytical approach is to analyze the groups based on treatment

assignment (the intent-to-treat effect; ITT). However, this estimand is the effect of being

assigned to the treatment, and not the treatment receipt. A second, less-common method

is analyze the groups as treated, although it is unclear what the treatment effect estimand

represents in this case.
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One proposed strategy to estimate the causal effects of program participation under imper-

fect compliance is to use instrumental variables estimation (IV; e.g., Angrist et al., 1996;

Bloom, 1984, 2005). An instrumental variable is a variable that is related to the outcome

of interest only through the treatment. In the context of an MST, treatment assignment

is an instrument for treatment receipt. The IV estimand is the effect of the treatment for

those that complied with their treatment assignment, the Complier Average Treatment Ef-

fect (CATE). The CATE is already being using to estimate treatment effects in educational

research in the presence of noncompliance (Clark et al., 2015; Kim et al., 2011; Lynch and

Kim, 2017; Bettinger and Baker, 2014; Borman et al., 2009; Boatman and Long, 2018). The

CATE is also recognized as a valid measure of causal treatment effects by the Institute of

Educational Sciences (Schochet and Chiang, 2009) and the most recent version of the What

Works Clearinghouse (WWC) Standards Handbook now includes standards for reporting

the CATE in randomized controlled trials with imperfect compliance (Version 4.0, Section

IID; U.S. Department of Education, 2017).

There is a small (but growing) body of literature on investigating the performance of IV

methods for estimating the CATE and CATE heterogeneity in MSTs. Raudenbush et al.

(2012) proposed three estimators that use IV to estimate the CATE and CATE heterogene-

ity in MSTs. Reardon et al. (2014) reported on the performance of using IV to estimate

treatment effects in MSTs when a key assumption is violated. But there has not yet been a

thorough examination of these estimators in recovering the CATE and CATE heterogeneity.

Method

The present simulation study compares the ability of 5 different estimators to recover the

CATE and CATE heterogeneity across a host of simulation conditions that resemble well-

known educational programs (Weiss et al., 2017). The five estimators are:

2



• AsTreated - A multilevel model where the treatment and effect groups are defined by

their observed treatment status.

• ITT - A multilevel model where the treatment groups are defined by their treatment

assignment; this method is implemented as described in Bloom et al. (2017).

• IV1 - The second multisite IV estimator described in Raudenbush et al. (2012), which

uses an MST IV approach that pools dataacross sites to obtain a global estimate of

the treatment effect and it variability.

• IV2 - The third multisite IV estimator described in Raudenbush et al. (2012), which

uses precision weighting of the IV estimates obtained at each site, treating the esti-

mated within- and across-site variances as known.

• IV3 - One of the bias-correcting IV estimators described in Reardon et al. (2014) that

closely resembles the third estimator described in Raudenbush et al. (2012), except

that shrunken estimates from the first-stage IV equation are used in the second-stage

IV equation.

The data-generating parameters are the number of sites, within-site sample size, the degree of

noncompliance, treatment effect magnitude, treatment effect heterogeneity, and the magni-

tude of bias induced by the noncompliance (i.e., selection bias). The exact parameter values

are enumerated in Table 1. The R syntax for the data-generating model and implementation

the five estimators can be found in Appendices A and B, respectively. The performance of

the five estimators in recovering the treatment effect and treatment effect heterogeneity is

evaluated by examining the bias and relative parameter bias across 500 replications of each

of the simulation conditions1.
1More replications across a larger set of data-generating parameters, including treatment allocation vari-

ance, compliance variance, and the control-group-treatment-effect correlation are currently underway and
will be complete by 2020.
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Results

Table 2 reports the relative parameter bias for both the CATE and CATE hetergeneity es-

timates for a selected set of simulation conditions. In these simulation conditions, all three

multisite IV estimators are able to recover the CATE well. The ITT consistently underes-

imates the CATE, whereas the “AsTreated” method consistently overestimates the CATE.

Of the three IV estimators, IV1 is able to best recover the treatment effect heterogeneity

across the conditions, with IV2 and IV3 often underestimating the variability in treatment

effects.

Figure 1 shows a more nuanced understanding the amount of bias exhibited by the estima-

tors as a function of the number of sites and number of individuals at a site. While the

“AsTreated” and ITT method exhibit the expected behavior, all estimators display a large

amount of variability in estimating the average CATE in small sample conditions, such as

when there are only 20 sites and 20 participants at each site (which may resemble a study

across 20 classrooms). While increasing the number of sites reduces the variance in this es-

timate, increasing the number of participants per site seems to better reduce the variability

in the CATE estimate (e.g., comparing 20 sites with 100 individuals per site vs. 100 sites

with 20 individuals per site).

Figure 2 shows the effects of compliance on CATE heterogeneity recovery for each estimator

in small-sample conditions2. The ITT underestimates variability as the true variability

increases and compliance decreases. All three IV methods are able to better recover the

CATE heterogeneity as the true heterogeneity increases. These results suggest that the IV

methods introduced by Raudenbush et al. (2012) and Reardon et al. (2014) can be effective

in recovering the CATE, with the second IV MST method introduced by Raudenbush et al.

(2012) being the most effecting in recovering CATE heterogeneity. Best recommendations do

vary by simulation condition; more complete and pointed recommendations will be presented.

2The odd shape is due to variances only having positive values, and thus a limit on its bias.
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Table 1: Enumeration of Simulation Conditions

Parameter Simulation Conditions
Number of Sites 200, 100, 50, 20
Number of Simulees Per Site 200, 100, 20
Degree of Within-Site Size Variability 10%, 20%
Compliance 1, 0.9, 0.75
Treatment Effect Size 0, .3, .7
Treatment Effect Heterogeneity 0, 0.1, 0.25
Magnitude of Selection Bias Constant .1, .25, .5
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Figure 1: Treatment Effect Bias.
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Figure 2: Treatment Effect Heterogeneity Bias.
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Appendix A: Data-Generating Syntax

###################
## Full-Data DGM ##
###################

multisite_data_dgm <- function(nsites, npersite,
site_var, rho,
compliance, comp_var,
allocation_var,
TxEff, TxHetero, SBias,
condNum){

sitevals <- generate_site_params(nsites, npersite,
site_var, rho,
compliance, comp_var,
allocation_var,
TxEff, TxHetero, SBias,
condNum)

site_list <- split(sitevals, sitevals$site)
full_data <- map_dfr(site_list, within_site_dgm)
return(full_data)

}

####################
## Site-Level DGM ##
####################

generate_site_params <- function(nsites, npersite,
site_var, rho,
compliance, comp_var,
allocation_var,
TxEff, TxHetero, SBias,
condNum){

# Make site-level values first.
sitevals <- data.frame(site = as.factor(1:nsites))

# Number of simulees at each site
sitevals$sitesize <- case_when(site_var != 0 ~ round(runif(nsites,

npersite - ((npersite*site_var)/2),
npersite + ((npersite*site_var)/2))),
site_var == 0 ~ npersite)
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# Compliance level at each site
if(comp_var != 0){

sitevals$compliance_s <- runif(nsites,
compliance - ((compliance*comp_var)/2),
compliance + ((compliance*comp_var)/2))

}else{
sitevals$compliance_s <- compliance

}

# Creating unbalanced treatment allocation if desired
if(allocation_var != 0){

sitevals$apct <- runif(nsites,
0.5 - ((0.5 * allocation_var)/2),
0.5 + ((0.5 * allocation_var)/2))

}else{
sitevals$apct <- 0.5

}

# Additional DGM parameter
# 0, positive correlation, negative correlation?
rho <- rho
deltaInts <- mvtnorm::rmvnorm(nsites, mean = c(1, TxEff),

sigma = matrix(c(1, rho * TxHetero,
rho * TxHetero, TxHetero^2), 2, 2))

sitevals$delta_s <- deltaInts[,2]
sitevals$stage2int <- deltaInts[,1]

# Amount to add to AT and NT within-site
sitevals$biasdeg <- SBias
sitevals$condNum <- condNum
return(sitevals)

}

#####################
## Within-Site DGM ##
#####################

within_site_dgm <- function(data){

wndata <- data.frame(simulee = 1:data$sitesize)
wndata$site <- data$site
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# Setting up the treatment allocation / assignment
ntreat <- with(data, round(sitesize * apct))
wndata$Zi <- c(rep(1, ntreat), rep(0, data$sitesize - ntreat))

noncomp_num <- with(data, sitesize - round(compliance_s * sitesize))
even <- ((noncomp_num %% 2) == 0)

if(even){
NT <- noncomp_num/2
AT <- noncomp_num/2

}else{
NT <- trunc(noncomp_num/2)+1
AT <- trunc(noncomp_num/2)

}

comps <- data$sitesize - noncomp_num
strata_vec <- c(rep("NT", times = NT),

rep("AT", times = AT),
rep("C", times = comps))

wndata$strata <- sample(strata_vec, length(strata_vec))

wndata$Di <- with(wndata,
ifelse(strata == "NT", 0,
ifelse(strata == "AT", 1,
ifelse(strata == "C", Zi, NA))))

wndata$strata <- as.factor(wndata$strata)

# Outcome is a function of the intercept, treatment receipt, and error
s2e <- rnorm(data$sitesize, 0, 1)
s2int <- data$stage2int
delta <- data$delta_s

wndata$Y_is <- s2int + delta*wndata$Di + s2e

# Explicitly adding in confounding, as the additional effect is a result
# of unmodeled covariates. The effect size of the unmodeled covariate
# is biasdeg. This correlates potential outcomes with the strata.
wndata$Y_is <- with(wndata,

ifelse(strata == "AT", Y_is + data$biasdeg,
ifelse(strata == "NT", Y_is - data$biasdeg,

Y_is)))
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wndata$ZiCenter <- with(wndata, Zi - mean(Zi))
wndata$DiCenter <- with(wndata, Di - mean(Di))
wndata$condNum <- wndata$condNum

return(wndata)
}

###################################
# Specifying DGM parameter values #
###################################

design_factors <- list(nsites = c(200, 100, 50, 20),
npersite = c(200, 100, 20),
site_var = c(0.10, 0.20),
rho = c(0, .3), # unreported in current study
compliance = c(1, 0.9, 0.75),
comp_var = c(0, 0.10), # unreported in current study
allocation_var = c(0, 0.10), # unreported in current study
TxEff = c(0, 0.3, 0.7),
TxHetero = c(0, 0.1, 0.25),
SBias = c(0.1, 0.25, 0.5))

simConds <- purrr:::cross_df(design_factors)
simConds <- subset(simConds, !((compliance == 1) & (comp_var == .10)))
simConds$condNum <- 1:nrow(simConds)
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Appendix B: Estimator Implementation

library(dplyr)
library(metafor)
library(lme4)
library(tibble)

dataEval <- function(sitedata){

##############
# As Treated #
##############
treatSum <- lm(Y_is ~ 0 + site + site:Di, data = sitedata)
trt_coefs <- grep(":Di", names(coef(treatSum)))
siteTx <- coef(treatSum)[trt_coefs]
siteV <- diag(vcov(treatSum))[trt_coefs]

AsTreatREML <- rma.uni(yi = siteTx, vi = siteV)
AsTreat_conv <- 1

treat_pe <- as.numeric(AsTreatREML$beta)
treat_sd <- sqrt(AsTreatREML$tau2)

#######
# ITT #
#######
ITT <- lmer(Y_is ~ 0 + Zi + site + (0 + Zi | site), data = sitedata)
ITT_conv <- ifelse(is.null(ITT@optinfo$conv$lme4$code), 1, 0)
ITT_pe <- as.numeric(fixef(ITT)['Zi'])
ITT_sd <- unname(attributes(VarCorr(ITT)$site)$stddev['Zi'])

############################
## IV Method 1 - IVpooled ##
############################
IV1_gamma <- lmer(Di ~ ZiCenter + (ZiCenter | site), data = sitedata)
IV1_gamma_conv <- ifelse(is.null(IV1_gamma@optinfo$conv$lme4$code), 1, 0)
gamma_fe <- as.numeric(fixef(IV1_gamma)['ZiCenter'])
gamma_re <- unname(attributes(VarCorr(IV1_gamma)$site)$stddev['ZiCenter'])

IV1_pe <- ITT_pe / gamma_fe

IV1_sd <- sqrt((ITT_sd^2 - (ITT_pe^2 * gamma_re^2)) /
(gamma_fe^2 + gamma_re^2))
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###########################################################
## IV Method 2 - 2SLS with treatment * site interactions ##
###########################################################
IV2_s1 <- lm(Di ~ site + Zi:site, data = sitedata)
sitedata$DiPred <- predict(IV2_s1)

IV2_s2 <- lmer(Y_is ~ DiPred + (DiPred | site), data = sitedata)
IV2_s2_conv <- ifelse(is.null(IV2_s2@optinfo$conv$lme4$code), 1, 0)

IV2_pe <- as.numeric(fixef(IV2_s2)['DiPred']) # 0.231
IV2_sd <- unname(attributes(VarCorr(IV2_s2)$site)$stddev['DiPred'])

######################################
## IV Method 3 - EBayes First Stage ##
######################################
#Using equal variance for each group across all sites
site_summary_info <-

group_by(sitedata, site) %>% summarise(n = n())

# Just assuming equal individual-level variances. Makes it easier.
site_summary_info$siteInt <- fixef(IV1_gamma)[["(Intercept)"]] +

ranef(IV1_gamma)$site[["(Intercept)"]]

site_summary_info$EB_Beta <- fixef(IV1_gamma)[["ZiCenter"]] +
ranef(IV1_gamma)$site[["ZiCenter"]]

sitedata$DiEB <- site_summary_info$siteInt[sitedata$site] +
sitedata$Zi*site_summary_info$EB_Beta[sitedata$site]

IV3_s2 <- lmer(Y_is ~ DiEB + (DiEB | site), data = sitedata)
IV3_s2_conv <- ifelse(is.null(IV3_s2@optinfo$conv$lme4$code), 1, 0)

IV3_pe <- as.numeric(fixef(IV3_s2)['DiEB'])
IV3_sd <- unname(attributes(VarCorr(IV3_s2)$site)$stddev['DiEB'])

rdf <- tibble(
condNum = sitedata$condNum[1],
Method = c("AsTreat", "ITT", "IV1", "IV2", "IV3"),
conv = c(AsTreat_conv, ITT_conv, IV1_gamma_conv, IV2_s2_conv, IV3_s2_conv),
TxEff = c(treat_pe, ITT_pe, IV1_pe, IV2_pe, IV3_pe),
EffSd = c(treat_sd, ITT_sd, IV1_sd, IV2_sd, IV3_sd)

)
return(rdf)

}

16


	Background
	Method
	Results
	Appendix A: Data-Generating Syntax
	Appendix B: Estimator Implementation

