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Background

Multisite randomized controlled trials (MSTs) are an appealing design for testing educational
programs at scale because they “can be regarded as a ‘fleet’ of randomized experiments”
(Raudenbush and Bloom, 2015, p. 477) or a “planned meta-analysis” (Bloom et al., 2017,
p. 818). One popular MST design is a block-randomized controlled trial, where individu-
als within each block are randomized to treatment and control groups, like when students
within each of several schools are randomly assigned to a new educational program (Gerber
and Green, 2012). The results across multiple sites can be collected to estimate the aver-
age effect of the program and the treatment effect heterogeneity across sites (Bloom, 2005;
Raudenbush and Bloom, 2015). Understanding how effects of an educational program natu-
rally vary across sites is an important step toward better understanding in what populations
and contexts the treatment is most effective and what features lead to effective programs

(Raudenbush and Bloom, 2015; Zvoch, 2016; Reardon and Stuart, 2017; Olsen, 2017).

Estimating average treatment effects is straightforward when all individuals comply with
their random treatment assignment, but this does not always occur. When this randomiza-
tion is broken, a common analytical approach is to analyze the groups based on treatment
assignment (the intent-to-treat effect; ITT). However, this estimand is the effect of being
assigned to the treatment, and not the treatment receipt. A second, less-common method
is analyze the groups as treated, although it is unclear what the treatment effect estimand

represents in this case.



One proposed strategy to estimate the causal effects of program participation under imper-
fect compliance is to use instrumental variables estimation (IV; e.g., Angrist et al., 1996;
Bloom, 1984, 2005). An instrumental variable is a variable that is related to the outcome
of interest only through the treatment. In the context of an MST, treatment assignment
is an instrument for treatment receipt. The IV estimand is the effect of the treatment for
those that complied with their treatment assignment, the Complier Average Treatment Ef-
fect (CATE). The CATE is already being using to estimate treatment effects in educational
research in the presence of noncompliance (Clark et al., 2015; Kim et al., 2011; Lynch and
Kim, 2017; Bettinger and Baker, 2014; Borman et al., 2009; Boatman and Long, 2018). The
CATE is also recognized as a valid measure of causal treatment effects by the Institute of
Educational Sciences (Schochet and Chiang, 2009) and the most recent version of the What
Works Clearinghouse (WWC) Standards Handbook now includes standards for reporting
the CATE in randomized controlled trials with imperfect compliance (Version 4.0, Section

[ID; U.S. Department of Education, 2017).

There is a small (but growing) body of literature on investigating the performance of IV
methods for estimating the CATE and CATE heterogeneity in MSTs. Raudenbush et al.
(2012) proposed three estimators that use IV to estimate the CATE and CATE heterogene-
ity in MSTs. Reardon et al. (2014) reported on the performance of using IV to estimate
treatment effects in MSTs when a key assumption is violated. But there has not yet been a

thorough examination of these estimators in recovering the CATE and CATE heterogeneity.

Method

The present simulation study compares the ability of 5 different estimators to recover the
CATE and CATE heterogeneity across a host of simulation conditions that resemble well-

known educational programs (Weiss et al., 2017). The five estimators are:



o AsTreated - A multilevel model where the treatment and effect groups are defined by

their observed treatment status.

o ITT - A multilevel model where the treatment groups are defined by their treatment

assignment; this method is implemented as described in Bloom et al. (2017).

e IV1 - The second multisite IV estimator described in Raudenbush et al. (2012), which
uses an MST IV approach that pools dataacross sites to obtain a global estimate of

the treatment effect and it variability.

e IV2 - The third multisite IV estimator described in Raudenbush et al. (2012), which
uses precision weighting of the IV estimates obtained at each site, treating the esti-

mated within- and across-site variances as known.

o IV3 - One of the bias-correcting IV estimators described in Reardon et al. (2014) that
closely resembles the third estimator described in Raudenbush et al. (2012), except
that shrunken estimates from the first-stage IV equation are used in the second-stage

IV equation.

The data-generating parameters are the number of sites, within-site sample size, the degree of
noncompliance, treatment effect magnitude, treatment effect heterogeneity, and the magni-
tude of bias induced by the noncompliance (i.e., selection bias). The exact parameter values
are enumerated in Table 1. The R syntax for the data-generating model and implementation
the five estimators can be found in Appendices A and B, respectively. The performance of
the five estimators in recovering the treatment effect and treatment effect heterogeneity is
evaluated by examining the bias and relative parameter bias across 500 replications of each

of the simulation conditions!.

'More replications across a larger set of data-generating parameters, including treatment allocation vari-
ance, compliance variance, and the control-group-treatment-effect correlation are currently underway and
will be complete by 2020.



Results

Table 2 reports the relative parameter bias for both the CATE and CATE hetergeneity es-
timates for a selected set of simulation conditions. In these simulation conditions, all three
multisite IV estimators are able to recover the CATE well. The ITT consistently underes-
imates the CATE, whereas the “AsTreated” method consistently overestimates the CATE.
Of the three IV estimators, IV1 is able to best recover the treatment effect heterogeneity
across the conditions, with IV2 and IV3 often underestimating the variability in treatment

effects.

Figure 1 shows a more nuanced understanding the amount of bias exhibited by the estima-
tors as a function of the number of sites and number of individuals at a site. While the
“AsTreated” and ITT method exhibit the expected behavior, all estimators display a large
amount of variability in estimating the average CATE in small sample conditions, such as
when there are only 20 sites and 20 participants at each site (which may resemble a study
across 20 classrooms). While increasing the number of sites reduces the variance in this es-
timate, increasing the number of participants per site seems to better reduce the variability
in the CATE estimate (e.g., comparing 20 sites with 100 individuals per site vs. 100 sites
with 20 individuals per site).

Figure 2 shows the effects of compliance on CATE heterogeneity recovery for each estimator
in small-sample conditions®>. The ITT underestimates variability as the true variability
increases and compliance decreases. All three IV methods are able to better recover the
CATE heterogeneity as the true heterogeneity increases. These results suggest that the IV
methods introduced by Raudenbush et al. (2012) and Reardon et al. (2014) can be effective
in recovering the CATE, with the second IV MST method introduced by Raudenbush et al.
(2012) being the most effecting in recovering CATE heterogeneity. Best recommendations do

vary by simulation condition; more complete and pointed recommendations will be presented.

2The odd shape is due to variances only having positive values, and thus a limit on its bias.
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Table 1: Enumeration of Simulation Conditions

Parameter

Simulation Conditions

Number of Sites

Number of Simulees Per Site

Degree of Within-Site Size Variability
Compliance

Treatment Effect Size

Treatment Effect Heterogeneity
Magnitude of Selection Bias Constant

200, 100, 50, 20
200, 100, 20
10%, 20%

1, 0.9, 0.75
0,.3,.7

0,0.1, 0.25
1,.25, .5
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treatment effect heterogeneity = 0.1, and selection bias = 0.25.
Rows = Average n per site. Columns = Number of sites.

Figure 1: Treatment Effect Bias.
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Figure 2: Treatment Effect Heterogeneity Bias.
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Appendix A: Data-Generating Syntax

HH#HHHHH R R
## Full-Data DGM ##
HHHHAHHHHRRFHHHERRH

multisite_data_dgm <- function(nsites, npersite,
site_var, rho,
compliance, comp_var,
allocation_var,
TxEff, TxHetero, SBias,
condNum) {

sitevals <- generate_site_params(nsites, npersite,
site_var, rho,
compliance, comp_var,
allocation_var,
TxEff, TxHetero, SBias,
condNum)

site_list <- split(sitevals, sitevals$site)
full_data <- map_dfr(site_list, within_site_dgm)
return(full data)

HHuRHH AR
## Site-Level DGM ##
HERHHEFHHRHH AR A HH

generate_site_params <- function(nsites, npersite,
site_var, rho,
compliance, comp_var,
allocation_var,
TxEff, TxHetero, SBias,
condNum) {

# Make site-level wvalues first.
sitevals <- data.frame(site = as.factor(l:nsites))

# Number of simulees at each stite

sitevals$sitesize <- case_when(site var != 0 ~ round(runif (nsites,
npersite - ((npersite*site_var)/2),
npersite + ((npersite*site var)/2))),
site_var == 0 ~ npersite)

11



# Compliance level at each site
if (comp_var != 0){
sitevals$compliance_s <- runif(nsites,
compliance - ((compliance*comp_var)/2),
compliance + ((compliance*comp_var)/2))
Yelsed{
sitevals$compliance_s <- compliance

3

# Creating unbalanced treatment allocation if desired
if(allocation var != 0){
sitevals$apct <- runif(nsites,
0.5 - ((0.5 * allocation_var)/2),
0.5 + ((0.5 * allocation var)/2))
Yelse{
sitevals$apct <- 0.5
b

# Additional DGM parameter

# 0, positive correlation, negative correlation?

rho <- rho

deltalnts <- mvtnorm: :rmvnorm(nsites, mean = c(1, TxEff),
sigma = matrix(c(l, rho * TxHetero,
rho * TxHetero, TxHetero™2), 2, 2))

sitevals$delta_s <- deltalnts[,2]
sitevals$stage2int <- deltalnts[,1]

# Amount to add to AT and NT within-site
sitevals$biasdeg <- SBias
sitevals$condNum <- condNum
return(sitevals)

HHRHHEHHH AR
## Within-Site DGM ##
HHHSH R B R

within site_dgm <- function(data){

wndata <- data.frame(simulee = 1l:data$sitesize)
wndata$site <- data$site

12



# Setting up the treatment allocation / assignment
ntreat <- with(data, round(sitesize * apct))
wndata$Zi <- c(rep(l, ntreat), rep(0, data$sitesize - ntreat))

noncomp_num <- with(data, sitesize - round(compliance s * sitesize))
even <- ((noncomp_num %% 2) == 0)

if (even){
NT <- noncomp_num/2
AT <- noncomp_num/2
Yelse{
NT <- trunc(noncomp_num/2)+1
AT <- trunc(noncomp_num/2)

by

comps <- data$sitesize - noncomp_num

strata_vec <- c(rep("NT", times = NT),
rep("AT", times = AT),
rep("C", times = comps))

wndata$strata <- sample(strata_vec, length(strata_vec))

wndata$Di <- with(wndata,

ifelse(strata == "NT", O,
ifelse(strata == "AT", 1,
ifelse(strata == "C", Zi, NA))))

wndata$strata <- as.factor(wndata$strata)

# Outcome is a function of the intercept, treatment receipt, and error
s2e <- rnorm(data$sitesize, 0, 1)

s2int <- data$stage2int

delta <- data$delta_s

wndata$Y_is <- s2int + delta*wndata$Di + s2e

# Explicitly adding in confounding, as the additional effect is a result
# of unmodeled covartates. The effect size of the unmodeled covariate

# is biasdeg. This correlates potential outcomes with the strata.
wndata$Y_is <- with(wndata,

ifelse(strata == "AT", Y_is + data$biasdeg,
ifelse(strata == "NT", Y_is - data$biasdeg,
Y is)))

13



wndata$ZiCenter <- with(wndata, Zi - mean(Zi))
wndata$DiCenter <- with(wndata, Di - mean(Di))
wndata$condNum <- wndata$condNum

return(wndata)

L L L L R L L R R R R A ST S R IR BRIt
# Specifying DGM parameter values #
HHEHHH R R R R R R R

design factors <- list(nsites = c(200, 100, 50, 20),
npersite = c¢(200, 100, 20),
site var = c(0.10, 0.20),
rho = c(0, .3), # unreported in current study
compliance = c(1, 0.9, 0.75),
comp_var = c(0, 0.10), # unreported in current study
allocation_var = c(0, 0.10), # unreported in current study
TxEff = c(0, 0.3, 0.7),
TxHetero = c(0, 0.1, 0.25),
SBias = ¢(0.1, 0.25, 0.5))

simConds <- purrr:::cross_df(design factors)
simConds <- subset(simConds, !((compliance == 1) & (comp_var == .10)))
simConds$condNum <- 1:nrow(simConds)
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Appendix B: Estimator Implementation

library(dplyr)
library(metafor)
library(lme4)
library(tibble)

dataEval <- function(sitedata){

HAHBHHAHBHHAHH

# As Treated #

HERHHAFHERHHAH

treatSum <- 1m(Y_is ~ O + site + site:Di, data = sitedata)
trt_coefs <- grep(":Di", names(coef (treatSum)))

siteTx <- coef(treatSum) [trt_ coefs]

siteV <- diag(vcov(treatSum)) [trt_coefs]

AsTreatREML <- rma.uni(yi = siteTx, vi = siteV)
AsTreat conv <- 1

treat_pe <- as.numeric(AsTreatREML$beta)
treat_sd <- sqrt(AsTreatREML$tau2)

HitHH#H#

# ITT #

HHHHHHE

ITT <- 1lmer(Y_is ~ O + Zi + site + (0 + Zi | site), data = sitedata)
ITT conv <- ifelse(is.null(ITT@optinfo$conv$lmed$code), 1, 0)

ITT pe <- as.numeric(fixef (ITT)['Zi'])

ITT _sd <- unname(attributes(VarCorr(ITT)$site)$stddev['Zi'])

HERHHAFHHAHHBHHHAFHRAAH B HE

## IV Method 1 - IVpooled ##

HESHHASH R H R RS RS R R Y

IVl _gamma <- lmer(Di ~ ZiCenter + (ZiCenter | site), data = sitedata)

IVl _gamma_conv <- ifelse(is.null(IV1_gamma@optinfo$conv$lmed$code), 1, 0)
gamma_fe <- as.numeric(fixef(IV1_gamma) ['ZiCenter'])

gamma_re <- unname(attributes(VarCorr(IV1_gamma)$site)$stddev['ZiCenter'])

IVl _pe <- ITT_pe / gamma_fe

IVl _sd <- sqrt((ITT_sd™2 - (ITT_pe 2 * gamma _re~2)) /
(gamma_fe~2 + gamma re~2))

15



Bz i S s s i e S s e e s e e e R e R e s
## IV Method 2 - 2SLS with treatment * site interactions ##
HEHBHHAEHAH R HAH RS H AR BHHEHBHHEHBEH RS HAH RS H AR RS H AR RS RS H A H RS HAH
IV2 s1 <- 1m(Di ~ site + Zi:site, data = sitedata)
sitedata$DiPred <- predict(IV2_sl)

IV2_s2 <- lmer(Y_is ~ DiPred + (DiPred | site), data = sitedata)
IV2_s2_conv <- ifelse(is.null(IV2_s2@optinfo$convélmed$code), 1, 0)

IV2_pe <- as.numeric(fixef(IV2_s2)['DiPred']) # 0.231
IV2_sd <- unname(attributes(VarCorr(IV2_s2)$site)$stddev['DiPred'])

T
## IV Method 3 - EBayes First Stage ##
A
#Using equal wvartiance for each group across all sites
site_summary_info <-

group_by(sitedata, site) %>/ summarise(n = n())

# Just assuming equal individual-level wvariances. Makes it easier.
site_summary info$siteInt <- fixef (IV1_gamma) [["(Intercept)"]] +
ranef (IV1_gamma)$site[[" (Intercept)"]]

site_summary_info$EB_Beta <- fixef (IV1_gamma) [["ZiCenter"]] +
ranef (IV1_gamma)$site[["ZiCenter"]]

sitedata$DiEB <- site_summary_info$sitelInt[sitedata$site] +
sitedata$Zi*site_summary_ info$EB Beta[sitedata$site]

IV3_s2 <- lmer(Y_is ~ DiEB + (DiEB | site), data = sitedata)
IV3_s2_conv <- ifelse(is.null(IV3_s2@optinfo$conv$lmed$code), 1, 0)

IV3_pe <- as.numeric(fixef(IV3_s2)['DiEB'])
IV3 sd <- unname(attributes(VarCorr(IV3 s2)$site)$stddev['DiEB'])

rdf <- tibble(
condNum = sitedata$condNum[1],
Method = c("AsTreat", "ITT", "IV1", "IV2", "IV3"),
conv = c(AsTreat_conv, ITT _conv, IV1_gamma conv, IV2_s2 conv, IV3_s2 conv),
TxEff = c(treat_pe, ITT pe, IVl _pe, IV2 pe, IV3_pe),
EffSd = c(treat_sd, ITT sd, IVl sd, IV2_ sd, IV3_sd)
)

return(rdf)
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