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Context 

Effect size reporting represents an important step in data analysis, allowing the researcher to interpret 

and contextualize the findings.  Multilevel models consider data at two or more levels of nesting, such as 

students nested within schools.  Thus, an important result from multilevel models involves an effect size 

measure for the random effect of group.   

The multilevel survival model, which measures a time to event outcome with nested data may be 

particularly useful for experimental and educational research.  For example, Wao (2010) used a discrete 

multilevel survival model to investigate a time to doctorate outcome.  Multilevel survival models may 

also be a useful tool for experimental research where predictors are based on assigned groups such as 

an experimental curriculum.   

The present study considers one discrete multilevel survival model and one continuous multilevel 

survival model for comparison purposes.  By considering the random effect size measure for each model 

using the same data, the implications of choosing a discrete versus continuous model can be considered.   

The discrete multilevel survival model can be implemented using a multilevel logistic regression model 

as follows:    

logit(pij) = γ1*t1ij + γ2*t2ij + γ3*t3ij + γ4*t4ij + γ5*t5ij + u0j 

where 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛⁡(
𝑝

1−𝑝
) 

(1) 

 Where p represents the probability of the event occurring, t1-t5 represent five discrete time points, γ 

represent slope coefficients, u represents the random effect for group, i represents level-1 individuals 

and j represents level-2 groups.  Note that the preceding model includes all 5 time points and as such, 

no intercept is estimated.  No predictors are added to the present formulation since the unconditional 

model is typically used to assess random effects. 

The multilevel Cox regression model, considered a frailty model (Austin, 2017) can be implemented as 

follows: 

hi(t) = h0(t)exp(uj) (2) 

Where all symbols are as defined previously and h0(t) represents the baseline hazard function.   

To measure the effect of nesting for a multilevel logistic regression, the intraclass correlation coefficient 

(ICC) or the median odds ratio (MOR) can be computed; for the multilevel Cox regression, the median 

hazard ratio (MHR) can be computed (Austin et al., 2017).  If σ2 is given as the variance of the random 

effect, the ICC = σ2/(σ2 + π2/3) (Rodriguez & Elo, 2003); MOR = exp⁡(√2𝜎2𝜙−1(.75)) where 

𝜙−1⁡indicates the inverse of the standard normal cumulative distribution function (Austin et al., 2017); 
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and MHR for a model with random effects distributed according to the Gamma distribution is computed 

as upper quantile of F(2σ-2, 2σ-2) distribution (Austin et al., 2017). 

Research question  

How does the choice of a discrete versus continuous multilevel survival model relate to the information 

about random effect size provided for various datasets? 

Methods 

Monte Carlo simulation was used.  All data was simulated and analyzed in R (R Core Team, 2019).  

Variables that vary by condition include level 1 sample size (i.e. group size, values of 5 and 30); level 2 

sample size (i.e. number of groups, values of 10 and 40), and nesting (small, medium, and large group 

effect).  A total of 2*2*3 = 12 conditions were simulated and for each condition, 500 simulations were 

used.  A few values were not varied by condition including the average probability of censoring which 

was set at 0.3 and the number of time periods which was set at 5.  Simulated datasets included a group 

(random) effect by varying the probability of censoring based on level 2 group membership. 

Two empty multilevel models were estimated: the discrete survival model was estimated with a 

multilevel logistic regression model using glmer function in the lme4 package (Bates et al., 2015) and the 

continuous multilevel Cox (frailty) model with Gamma random effects distribution was estimated using 

the frailtyPenal function in the frailtypack package (Rondeau, Mazroui, & Gonzalez, 2012).   

Results  

Table 1 shows the average value for ICC, MOR, and MHR for each condition, as well as the standard 

deviation of the simulations which represents standard error for the given statistic.   Table 2 shows the 

correlations among the effect size values and the conditions. The ICC, based on the discrete survival 

model represents the proportion of variance at the group level.  For example, for the first condition (i.e. 

1st row on Table 1), the ICC = 0.04 indicating that about 4% of the variance in the outcome measure is at 

the group level.  The ICC doesn’t tend to vary much based on sample size although Table 2 indicates a 

small positive correlation between ICC and sample size.  As expected, the ICC is positively related to the 

true group variance.  The MOR represents the ratio of median odds for an individual who moves from a 

low-risk to a high-risk cluster (Austin et al., 2017).  For example, for the first condition (i.e. first row of 

Table 1), the odds of event occurrence for a high-risk group are 1.33 times those for a low-risk group.  

The MOR also shows a small positive correlation with sample size and is positively related to the true 

group variance.  The MHR represents the median increase in hazard when moving from a low-risk to a 

high-risk cluster.  For example, the first condition indicates that the median increase in hazard for event 

occurrence is 3% when moving from a low-risk to high-risk group.  The MHR shows a small negative 

relationship with sample size and a modest positive relationship with the true group variance. 

Conclusions  

Based on the present results, the degree of nesting may be under-represented with the MHR based on 

the Cox regression model compared with the MOR based on the logistic regression model.  With the 

present conditions, particularly with only 5 time points, the estimates based on the continuous Cox 

model appear to be somewhat unstable.  The full paper will additionally include conditions with varying 

number of time points which should help researchers assess, based on their data, whether a discrete or 
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continuous model may be more appropriate.  The full paper additionally provides a demonstration of 

interpretation of these measures of effect size for random effects in multilevel survival models. 
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Table 1 

Average value of ICC, MOR, & MHR for each of 12 conditions.   

Each value based on 500 replications.  SE represents the standard deviation of the given measure.  NL1 = 

group size; NL2 = number of groups; L2SD = levels of nesting. 

NL1 NL2 L2SD ICC SE MOR SE MHR SE 

5 10 0.2 0.04 0.05 1.33 0.38 1.03 0.07 

30 10 0.2 0.04 0.03 1.39 0.22 1.09 0.07 

5 40 0.2 0.04 0.03 1.39 0.24 1.01 0.04 

30 40 0.2 0.04 0.02 1.45 0.1 1.13 0.05 

5 10 0.3 0.08 0.08 1.61 0.59 1.1 0.16 

30 10 0.3 0.08 0.07 1.68 0.46 1.14 0.08 

5 40 0.3 0.08 0.05 1.67 0.31 1.08 0.11 

30 40 0.3 0.09 0.03 1.74 0.2 1.05 0.08 

5 10 0.4 0.12 0.11 1.93 0.8 1.19 0.22 

30 10 0.4 0.14 0.11 2.12 1.03 1.16 0.09 

5 40 0.4 0.14 0.06 2 0.36 1.23 0.16 

30 40 0.4 0.16 0.06 2.13 0.36 1.01 0.04 
 

Table 2 

Correlations between conditions and effect size values.   

NL1 = group size; NL2 = number of groups; L2SD = levels of nesting.  Each value based on 12 conditions * 

500 replications = 6000 total replications. 

  NL1 NL2 L2SD ICC MOR MHR 

ICC 0.06 0.05 0.53    

MOR 0.08 0.05 0.47 0.97   

MHR -0.04 -0.13 0.26 0.49 0.44  
 


