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Context:  

Questions of mediation are important for understanding causal pathways by which 

an intervention affects outcomes. This study is motivated by the Job Search Intervention 

Study (JOBS II) (Vinokur et al., 1995), which evaluates the impact of a job training 

intervention through a randomized experiment. In the hypothesized mediation mechanism 

(Imai et al., 2010a), as depicted in Figure 1, participants’ job search self-efficacy, 𝑀, 

mediates the effect of the intervention, 𝑇, on their depression level 𝑌. The total treatment 

effect can be decomposed into an indirect effect transmitted through the mediator and a 

direct effect operating through all the other possible mechanisms.  

 

Identification of direct and indirect effects relies on the assumptions of (1) no 

unmeasured confounders of the treatment–mediator and treatment–outcome relationships, 

and (2) no unmeasured confounders of the mediator–outcome relationship. Even if (1) is 

satisfied in a randomized experiment, (2) typically does not hold, given that mediator 

values are usually generated naturally. A sensitivity analysis is necessary for determining 

whether potential violations of identification assumptions would easily alter causal 

conclusions. However, its importance has not received enough attention in educational 

studies.  

Different sensitivity analysis strategies have been developed for causal mediation 

analysis. Most are proposed within the regression framework (e.g. VanderWeele, 2010). 

Mediator and outcome model misspecifications may result in misleading sensitivity 

assessment. To reduce reliance on parametric assumptions, Hong et al. (2018) developed 

a weighting-based method that does not require outcome model specification. While 

these methods evaluate the extent to which unmeasured confounding would bias point 

estimates, little attention has been paid to its influence on estimation efficiency. This 

would lead to an inaccurate assessment of the change in the significance of causal effects. 

Only Imai et al. (2010a, 2010b) took this issue into account. Nevertheless, as they 

acknowledged, it is difficult to interpret their sensitivity parameter.  

Objective/Research Question:  

To overcome these limitations, we develop a simulation-based sensitivity analysis 

strategy. Illustrated through JOBS II, we aim to investigate, for the original causal 

inference about direct and indirect effects to be altered under treatment randomization, to 



what extent must an unmeasured confounder be associated with the mediator and 

outcome. Should a weak unmeasured confounder easily alter the significance of direct 

and indirect effects, we would conclude that causal conclusions are sensitive to potential 

violations of the identification assumption. 

 

Intervention/Participants:  

The JOBS intervention consisted of five 4-hour training sessions, aiming at 

enhancing participants’ job-search skills and mental health. 1,801 recent job losers were 

randomly assigned to an experimental group (n = 671), which received the intervention 

during 22 weeks, and a control group (n = 1,130), which received a booklet briefly 

introducing job-search methods. 

 

Measures: 

The mediator (confidence in six job-search skills) and outcome (depression level) 

were respectively measured 2 and 4 weeks after randomization. Baseline data contain 

participants’ level of depression and demographics such as age, gender, education, race, 

marital status, and occupation, etc. 

 

Proposed Method: 

For illustration purposes, we consider a simple setup of a randomized binary 

treatment 𝑇, a binary mediator 𝑀, and a continuous outcome 𝑌. We assume that a binary 

pretreatment covariate 𝑈 is the only unmeasured confounder and is independent of 

observed pretreatment confounders 𝐗. Hence, the conditional distribution of 𝑈 is 

factorized as  

Pr(𝑈 = 1|𝑌,𝑀, 𝑇, 𝐗) =
𝑓(𝑌|𝑀, 𝑇, 𝐗, 𝑈 = 1) × Pr(𝑀|𝑇, 𝐗, 𝑈 = 1) × Pr(𝑈 = 1)

∑ 𝑓(𝑌|𝑀, 𝑇, 𝐗, 𝑈 = 𝑢) × Pr(𝑀|𝑇, 𝐗, 𝑈 = 𝑢) × Pr(𝑈 = 𝑢)1
𝑢=0

. 

This enables us to specify sensitivity parameters as the conditional associations of 𝑈 with 

𝑌 and 𝑀, which intuitively reflect the confounding role of 𝑈. The challenge is that all the 

other parameters from 𝑓(𝑌|𝑀, 𝑇, 𝐗, 𝑈 = 1), Pr(𝑀|𝑇, 𝐗, 𝑈 = 1), and Pr(𝑈 = 1) are 

unknown. The estimation of the parameters relies on 𝑈, while 𝑈 needs to be drawn from 

the conditional distribution determined by these parameters. We solve the problem with 

Stochastic EM algorithm (Nielsen, 2000; Carnegie et al., 2016). 

To evaluate the influence of 𝑈 of different strength, we specify a plausible range 

of sensitivity parameter values. Given each combination of sensitivity parameters, we 

repeatedly generate 𝑈 from its conditional distribution, update the original analysis by 

adjusting for each random draw of 𝑈, and use Rubin’s (1987) rules to combine the 

adjusted direct and indirect effect estimates and their standard error estimates. This 

allows us to capture the influence of 𝑈 on estimation efficiency.  

Sensitivity assessment becomes possible through a comparison of analysis results 

before and after adjusting for 𝑈. The proposed approach is applicable to different causal 

mediation analysis methods. We have verified through simulations that, the approach is 

robust to misspecifications of the observed part of the outcome model when applied to 

the ratio-of-mediator probability weighting (Hong, 2010), which is a propensity score-

based weighting method that only requires mediator model specification. 



We also provide a convenient tool to visually represent sensitivity analysis results. 

By applying the method to JOBS II, we obtain Figure 2. Each black contour represents 

the combinations of sensitivity parameters that lead to the same indirect effect estimate as 

indicated by the number on the contour. The sensitivity parameters along the red dashed 

curves reduce the estimate to zero. In the region between the blue dotted curves, the 

significance is unchanged. The change in the standard error tends to be bigger with the 

increase in the confounding effect of 𝑈. Each dot corresponds to the conditional 

associations of each observed covariate with 𝑌 and 𝑀, which are used to calibrate the 

strength of sensitivity parameters. This plot indicates that, for the original causal 

conclusions to be reversed, an unmeasured confounder must be stronger than the most 

important observed confounder. Given that this is highly unlikely, the results are 

insensitive to unmeasured pretreatment confounding. 

 

 

Conclusions: 

The proposed method allows researchers to intuitively evaluate sensitivity 

parameters in reference to prior knowledge about the strength of unmeasured 

confounders, and accurately reflects the influence of unmeasured confounding on 

estimation efficiency.  

We have been focusing on binary 𝑀 and 𝑈. For broader applications, we will 

extend the method to allow 𝑀 and 𝑈 to be discrete or continuous. It can also be extended 

to observational studies. In addition, we assume that there are no unmeasured 

posttreatment confounders of the mediator-outcome relationship. We relax this 

assumption in another ongoing work.   
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