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Background: Randomized trials are considered the gold standard for estimating causal effects. 
Trial findings are often used to inform education policy and program implementation. While 
trials have strong internal validity by design, they may suffer from poor external validity, or 
generalizability, to the target population of interest (Bell et al., 2016; Cook, 2014; Tipton, 2014).  
Formally, the sample average treatment effect estimated in the trial (SATE) will be a biased 
estimate of the population average treatment effect (PATE; Olsen et al., 2013) if there are 
treatment effect moderators whose distributions differ between the trial and target population.  
Statistical methods have been developed to improve generalizability by combining trials and 
population data, and weighting the trial to resemble the population on baseline covariates. The 
implementation of these methods requires the identification of a dataset for the target population 
of interest, one that contains individual-level data on all relevant treatment effect modifiers in the 
trial. While data availability and quality make this challenging to do (Stuart and Rhodes, 2017), 
in practice, large nationally representative surveys collected by government agencies are often 
good sources of information on policy-relevant populations. However, these surveys often have 
complex sampling designs, with weights assigned to each participant relating them to the target 
population, and yet there is currently no best practice for incorporating survey weights when 
generalizing trial findings to a complex survey. Failing to account for these can result in 
estimates that are generalized to the complex survey sample, and not to the true target population 
of interest. 

Purpose: We propose and investigate an approach to incorporate survey weights when 
generalizing trial findings to a population using population data from a complex survey sample. 
We examine the performance of this method (and the consequences of ignoring the complex 
survey weights) in simulations and then apply the methods to generalize findings from 
PREMIER, a lifestyle intervention trial, to a target population from NHANES. The work 
highlights the importance in properly accounting for the complex survey sampling design when 
generalizing trial findings to a population represented by a complex survey sample. 
 
Methods: When a trial is not representative of the target population of interest, a current 
common approach to estimating the PATE is to transport the effect in the trial to a survey by 
weighting the trial to look more like the survey on pre-treatment characteristics. The first step to 
doing so is to specify a model of sample membership for the trial vs. the survey conditional on 
the set of covariates that influence sample membership and moderate treatment effect. This is 
similar to fitting a propensity score model of treatment assignment in non-experimental studies. 
The sample membership model is then used to predict the probability of trial participation, ê(X), 
and to construct weights equal to the inverse odds of êX) for trial participants, and 0 for survey 
participants. The PATE is then estimated as the mean difference of outcomes under treatment 
and control in the trial, weighted by the inverse odds of sample membership.  



However, when complex survey data are used as the population data, this transported estimate is 
a biased estimate of the PATE because it ignores the survey’s weights relating the survey to the 
target population. In order to account for this, we propose a two-stage weighting approach, 
where we first weight the sample membership model, such that survey participants are weighted 
by the inverse probability of survey selection (using the complex survey weights), and trial 
participants are given a weight of 1. For example, if a survey participant has a probability of 
survey selection of 0.02, the corresponding weight of 1/0.02 = 50 suggests that the individual in 
the survey should count for 50 people in the population when fitting the sample membership 
model. Weighting the survey participants in the sample membership model in this way enables 
us to better compare the trial demographics to the target population, and not just to the survey 
sample.  

Simulation Results: Figure 1 shows the bias of estimating the PATE using the naïve trial 
estimator (red), the transportability estimator ignoring survey weights (green), and the 
transportability estimator using the survey weights to weight the sample membership model 
(blue). As the trial differs more greatly from the target population (moving down the rows), the 
naïve trial estimate becomes increasingly biased as expected. As the survey differs more greatly 
from the target population (moving from left to right on the x axis), the transportability estimate 
ignoring the survey weights becomes increasingly biased, and eventually more biased than the 
naïve trial estimate. On the other hand, the transported estimate that uses the survey weights to fit 
a weighted sample membership model is uniformly less biased than the other estimators across 
all scenarios. Note also that incorporating the survey weights appears to protect the transported 
estimate from becoming more biased as the survey becomes less representative.  

Conclusion: When transporting trial findings to a population dataset that come from a complex 
survey, it is crucial to incorporate the survey weights in order to estimate the PATE. Our work 
has shown that fitting a sample membership model weighted by survey weights can only 
improve upon our ability to draw population-level inferences from RCTs, and that failing to do 
so may actually result in more biased estimates. Given that complex survey data often come 
ready for use with a variable containing the necessary survey weights, implementing this 
approach does not require specifying any additional models other than those needed for the 
standard transportability weighting methods. Our two-stage weighting method will ultimately 
allow researchers to draw more accurate population inferences from trials, and therefore better 
leverage information from trials when formulating education policies.  
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Figure	1:	Bias	of	estimating	the	PATE	by	weighting	method.	Each	column	represents	a	different	scenario	of	missing	a	variable	
used	to	calculate	survey	weights	in	the	analytic	survey	dataset.	From	top	to	bottom	row,	the	γ1	“scale"	parameter	for	how	much	
the	trial	differs	from	the	population	by	the	Xs	increases.	The	different	line	types	and	colors	represent	the	different	weighting	
approaches:	Naïve	trial	estimate	(red	solid),	transported	estimate	ignoring	the	survey	weights	(green	dash)	and	transported	
estimate	using	the	survey	weights	(blue	dotted	dash).	


