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• Interventionists often justify short-term intervention 
targets based on their potential for long-run effects.1

• We can forecast long-term outcomes using non-
experimental data.2

• Past attempts have overestimated or underestimated 
these outcomes. 2,3

Sources of Bias in Forecasts 

Introduction Results

•Proximal predictors show most 

over-alignment bias.

•Proximal and Distal predictors 

show under-alignment bias. 

•OVB substantially reduced with 

full set of controls.
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Treatment

• Choose one proximal measure and one 

distal measure 

• By averaging forecasts from measures that 

can lead to over-and under-estimation we 

may approximate an accurate forecast 

Addressing Omitted Variable Bias (OVB)1 Proximal and/or Distal Measures?3

Addressing Over- and Under-Alignment Bias2
Legend:

“Biases in forecasting the long-term 
impacts of an intervention may 
be reduced by including measures of skills 
both proximal and distal to the 
intervention at the end of treatment.”

Hypotheses

Method Discussion
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1. Using proximal short-term measures leads to over-
estimated forecasts (over-alignment bias)

2. Using distal short-term measures leads to under-
estimated forecasts (under-alignment bias)

3. Most measures will over-estimate forecasts due to 
omitted variable bias.

4. Using a combination of proximal and distal short-term 
measures may yield a more accurate forecast

• 639 students (1st - 3rd grade)
• 68% African American, 20% White, 7% 

Hispanic, 5% Other or missing, 
• 84% Free-or-reduced price lunch
• 50% Female, 50% Male

Participants

• Demographic variables: gender, free-or-
reduced price lunch, English Second 
language learner

• Pretests: Facts Correctly Retrieved, 
Double-Digit calculation, Story Problems, 
Number Sets, Number Line Estimation, 
WRAT-arithmetic, Key-Math Numeration; 
Number Sets

Covariates

• Omitted variable, under-, and over-alignment bias are ubiquitous 
when estimating the magnitude of long-term relationships 
between skills conditional on the short-term relationships.

• Forecasting with a single short-term outcome, on average, yields 
an estimate that approaches the observed treatment impact. 

• Forecasting with multiple non-independent short-term outcomes, 
on average, yields an estimate that over-estimates the observed 
treatment impact. 

• Forecasting with multiple independent short-term outcomes, on 
average, yields an estimate that over-estimates the observed 
treatment impact. 

Promising Solutions
Use full set of pretests as controls  

Use proximal measures with small impacts 

and distal measures with large impacts 

Poor Solutions

Assume outcome measures have 

independent effects on the long-term 

outcome forecast
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Secondary data-analysis of Randomized Control Trial: 
Number knowledge tutoring (Fuchs et al., 2013)4 • Proximal Measures: Facts Correctly 

Retrieved, Double-Digit calculation, Story 
Problems, Number Sets 

• Distal Measures: WRAT-arithmetic, Key-
Math Numeration; Number Line Estimation

Short-term 
Outcome 
Measures 
(Grade 1)

• Proximal Measures: Facts Correctly 
Retrieved, Number Sets

• Distal Measures: WRAT-arithmetic, Key-
Math Numeration; Number Line Estimation

Long-term 
Outcome 
Measures 
(Grade 3)
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Experimental Benchmark– Forecast = Bias 
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