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Purpose Latent Profile Analysis Bayesian Analysis of AT|

Why consider Bayesian analysis for ATI?

« A Bayesian approach can facilitate interpretation because it supports probability

Prior studies: Focus on a single moderator 3 Three mﬂde"ﬂg queStiﬂnS for LPA

Treatment Effect Heterogeneity
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Measures Working Memory

Class 4: Average readers with /owword reading skills

Word Reading Synergistic interaction vs. compensatory interaction?
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