Examining the Causal Direction of Synchronous Effects in Structural Panel Models

Using Residual-predictor Independence Tests to Identify Model Mis-specifications

Xintong Li University of Missouri

Cross-lagged Panel Model (CLPM)

- Cross-lagged panel models are structural equation models that estimate the directional influence/causal predominance/ causal preponderance over time between two focal variables, which are collected at multiple time points (Finkel, 1995, Newsom, 2015).
- Major Assumptions:
 - No measurement error
 - Appropriate time interval for the lagged effect
 - No confounder
 - Zero synchronous effect

CLPM with Synchronous Effect (1)

- Reciprocal Synchronous Effect Model
 - Non-recursive
 - Not Identifiable without instrumental variable(s)

CLPM with Synchronous Effect (2)

- Competing Synchronous Effect Model
 - [What] Model Selection → Parameter Estimation
 - [One option] Theory based model selection
 - [Why] Mis-specified model → biased parameter estimates?
 - [Challenge] The same model fit
 - two waves
 - multiple waves
 - [Solution] Residual-predictor independence tests

Model A.

Model B.

Research Question 1

Will a mis-specified direction of synchronous effect or the neglecting of the synchronous effect lead to erroneous causal conclusions in cross-lagged panel models?

Monte Carlo Simulation: Models

Monte Carlo Simulation: Parameters

Simulations ($2 \times 2 \times 2=8$)

Synchronous effect	$b_{syn_t} \in \{0.14, 0.39\}$
Cross-lagged effects	$\beta_{(x \to y)_t} \in \{0, .39\}; \beta_{(y \to x)_t} \in \{0\}$
Autoregressive effects	$\beta_{tx_t} \in \{ 0.59 \}; \beta_{ty_t} \in \{ 0.59 \}$
Shape of <i>x</i> and <i>y</i> at Time 1	$\gamma_{x_1} \in \{ 1, 1, 4 \}; \gamma_{y_1} \in \{ 1.4 \};$ Gamma Distribution
Shape of residual terms	$\gamma_{\varepsilon_x} \in \{ 1.4 \}; \gamma_{\varepsilon_y} \in \{ 1.4 \};$ Gamma Distribution
Correlation of Time 1 <i>x</i> and <i>y</i>	$\rho_{x_1y_1} \in \{0.39\}$

- N = 800 (Wiedermann, Li, & von Eye, 2019).
- Iteration =500

Model T.

Results: True Model

Model Selection Criterion				
No cross-lagged effect $\beta_{(x \to y)_t} = 0$	Non-zero cross-lagged effect $\beta_{(x \to y)_t} = 0.39$			
$p_{\beta_{(x \to y)}} \ge .05$ and	$p_{\beta_{(x \to y)}} < .05$ and			
$p_{\beta_{(y \to x)}} \ge .05$ and	$p_{\beta_{(y \to x)}} \ge .05$ and			
$p_{syn_t} < .05$	$p_{syn_t} < .05$			

Results: Directionally Mis-specified Model

Note that the empirical power is based on the correct causal inference using cross-lagged effects only.

Results: Zero Synchronous Effect Model

Note that the empirical power is based on the correct causal inference using cross-lagged effects only.

CLPM with Synchronous Effect (2)

- Competing Synchronous Effect Model
 - [What] Model Selection → Parameter Estimation
 - [One option] Theory based model selection
 - [Why] Mis-specified model → biased parameter estimates.
 - [Challenge] The same model fit
 - two waves
 - multiple waves
 - [Solution] Residual-predictor independence tests

Model A.

Model B.

Model Selection with Observational Data (1)

- Li, X. & Wiedermann, W. (2019). Conditional Direction Dependence Analysis: Evaluating the Causal Direction of Effects in Linear Models with Interaction Terms. *Multivariate Behavioral Research, (in press)*
- Wiedermann, W., & Sebastian, J. (2019). Direction dependence analysis in the presence of confounders: Applications to linear mediation models using observational data. *Multivariate behavioral research*, 1-21.
- Wiedermann, W., Li, X., & von Eye A. (2019). Testing the causal direction of mediation effects in randomized intervention studies. Prevention Science, 20, 419-430.
- Wiedermann, W., & Li, X. (2018). Direction dependence analysis: Testing the direction of effects in linear models with implementation in SPSS. *Behavior Research Methods*, 50 (4), 1581-1601.

Predictor-residual Independence

Bivariate patterns of predictors and residuals of competing linear models $(x \rightarrow y \text{ and } y \rightarrow x)$ for normal, and non-normal "true" predictors. (Wiedermann & Li, 2018)

- In the normal case, the two models cannot be distinguished from each other.
- In the non-normal scenarios, the two competing models *are mutually distinguishable*. Clear dependence structures occur in the mis-specified model.
- The normal distribution constitutes the special case where competing models cannot be uniquely distinguished because uncorrelatedness implies stochastic independence in the normal domain (cf. Hoyer et al., 2008).

Predictor-residual Independence Tests

• Model selection can be based on any independence test that is able to pick up dependence structures beyond *first order correlations*, as OLS residuals and predictors are always uncorrelated, or linearly independent.

• Stochastic independence ≠ linear independence

Homoscedasticity Tests

- Beyond the conventional explanations of heteroscedasticity, another type of source of non-constant variance is from directionally mis-specified models when the "true" predictor are non-normal (Wiedermann et al., 2017).
- Breusch–Pagan test (Breusch & Pagan, 1979) and the robust version of Breusch–Pagan test (Koenker, 1981; Koenker & Bassett Jr, 1982)

Omnibus independence tests

- Hilbert-Schmidt Independence Criterion (HSIC; cf. Gretton et al., 2008)
- The HSIC evaluates the independence of functions of random variables on the basis of Euclidian distance matrices and is provably omnibus in detecting any dependence between two random variables as n → ∞.
- The HSIC is also introduced in the context of testing the independence of predictors and error terms of linear regression models with a bootstrap approach to approximate the null distribution of the test statistic (Sen and Sen, 2014).

Research Question 2

Can Homoscedasticity tests and Hilbert Schmidt Independence Criterion (HSIC) inform the selection of structural panel models with competing direction of a synchronous effect?

Simulation Results: Independence Tests

zero cross-lagged effect					
$\beta_{(x \to y)_t} = 0.39$					
$p_{BP_{(x \to y)}} \ge .05$ and $p_{BP_{(y \to x)}} < .05$					
$p_{HSIC_{(x \to y)}} \ge .05$ and $p_{HSIC_{(y \to x)}} < .05$					

For more details see e.g.,

Wiedermann, W., & Sebastian, J. (2019). Sensitivity analysis and extensions of testing the causal direction of dependence: A rejoinder to Thoemmes (2019). *Multivariate Behavioral Research*, (*in press*). Wiedermann, W., & Li, X. (2018). Direction dependence analysis: Testing the direction of effects in linear models with implementation in SPSS. *Behavior Research Methods*, 50 (4), 1581-1601. Wiedermann, W., Artner, R., & von Eye, A. (2017). Heteroscedasticity as a basis for direction dependence in reversible linear regression models. *Multivariate Behavioral Research*, 52, 222-241.

Research Question 3

Can the proposed tests be used with empirical data to identify the direction of a synchronous effect?

An Empirical example:

Teacher Student Relation and Teachers' Cognitive Engagement Practices.

An Empirical Example from NEE

- Network for Educator Effectiveness (NEE; <u>neeadvantage.com</u>)
 - An authentic comprehensive educator evaluation system that provides services to over 283 school districts throughout Missouri
 - Teacher Effectiveness Student Survey (TESS) is a modular survey and includes 39 indicators of teaching practices that school districts can choose from according to their priority.
 - Cognitive engagement (CE) is one of the most prioritized teaching practices, which measure the degree to which a teacher cognitively engages students in the content in their teaching practices. (e.g., "The teacher wants us to ask questions during lessons.") 5 statement items are included
 - *Teacher Student Relation* (TSR) Three items address whether a teacher creates positive relationships with students (e.g., This teacher knows me and cares about me). 4 statement items are included
 - 4 point scale: ("Not true", "Sort of true", "True", "Very true")

An Empirical Example: Participants

- 613 Teachers in districts that have both *cognitive engagement* and *teacher student relation* prioritized across school year 2017-2018 and 2018-2019.
- Teachers were rated by students above 4th grade, and 26000 student ratings were collected in 2018 and 25938 student ratings were collected in 2019.
- Student level information is strictly anonymous. However, what is known is that participating districts in Missouri are diverse, serving both high- and low-income students in urban, suburban, and rural areas. Many serve very low-income, rural White students in the nations' poorest counties. Overall, students in NEE school districts are 80% White, non-Hispanic and 49% are eligible for free or reduced-price meals. The state averages are 73% and 50% respectively, suggesting NEE districts are fairly representative of the state.

Procedures

Online	Student	Data	Data	Data
delivery	ratings	screening	retrieval	processing
 End of the school years 2017-2018 2018-2019 	 Unique access code for each teacher Anonymous Trained adult proctor Standard administration scripts 	 High turnove at least a more distributed from the mean of the second secon	 er: hth end of 2019 Manually downloaded from the NEE database IRB approval District consents 	 Aggregation at teacher level Psychometric properties Analysis

Application Software

• SPSS macros

- Wiedermann, W., & Li, X. (2018). Direction dependence analysis: Testing the direction of effects in linear models with implementation in SPSS. *Behavior Research Methods*, 50 (4), 1581-1601.

• SPSS Custom Dialogue

Li, X., & Wiedermann, W. (*In press*). Using SPSS to test the direction of effects in reversible linear models: Introduction into DDA SPSS custom dialogue box with a worked example. In W. Wiedermann, D. Kim, E. Sungur & A. von Eye(Eds.) Direction Dependence in Statistical Models: Methods of Analysis (Book Chapter)

• R scripts/ Python

• Software and manual are downloadable at ddaproject.com

Results: Independence Tests

Competing Models	R_{adj}^2	Breusch–Pagan test		Hilbert-Schmidt Independence Criterion		
		χ^2	<i>p</i> -value	HSIC	<i>p</i> -value	
$TSR_{syn} \rightarrow CE_{syn}$.374	4.114	.128	.058	.106	
$CE_{syn} \rightarrow \text{TSR}_{syn}$.378	12.478	.002	.275	< .000	

Note:

1. TSR_{syn} and CE_{syn} are the synchronous effect terms controlling both autoregressive and cross-lagged effects, as well as a potential confounder: teachers' years of experience. 2. The *p* value of HSIC is based on 500 bootstrap samples.

Results: Cross-lagged panel analysis

- Synchronous effect
 - Halo effect
 - Necessary platform (Jimenez & Rose, 2010; Klem & Connell, 2004))
 - Teacher motivation (Spilt, Koomen, & Thijs, 2011)
- Cross-lagged effect
 - Engage in different ways
 - Other mechanism

Alternative Erroneous Models

Model DM.

Model ZS.

Fit Statistics Models	CFI	TLI	RMSEA	SRMR	AIC
Current Model	.974	.965	.073	.051	472.49
Model DM.	.974	.965	.073	.051	472.49
Model ZS.	.974	.965	.073	.051	472.49

Thank You!!

• For more information about predictor-residual independence tests and other direction dependence tests, please go to <u>ddaproject.com</u>

• For more information about Network for Educator Effectiveness, please go to <u>neeadvantage.com</u>

