Examining the Effects of Gifted Classes on Mathematics and Reading/Language Arts Achievement.

Presentation at SREE 2020 in the
Causal Inference in Clustered Observational Studies using Optimal Multilevel Matching Symposium

By
Daniel Long, Betsy McCoach, and Christopher Rhoads

Research Question

What is the effect of language arts and mathematics gifted classes on academic achievement of gifted students?

How well does optimal multilevel matching with network flows address selection in a clustered observational study?

Analytical Approach - Clustered Observational Study

1.We compare the academic achievement in two different groups of schools. One group of schools has gifted content instruction versus a group of schools that does not have gifted content instruction.
2. The school district we are examining allows schools to choose whether they provide gifted instruction in one of three formats:

1. Full time gifted instruction in both reading/language arts (RLA) and mathematics
2. Part time gifted instruction in only mathematics and regular instruction in RLA
3. Part time gifted instruction in only reading/language arts and regular instruction in Math
4. To examine the effect of a given content area, e.g. math, we could compare the math achievement of gifted students in schools with full time gifted instruction vs. only language arts gifted instruction.

\section*{Regular Math Program in a school with part-time gifted RLA instruction
 | Regular | Gifted |
| :--- | :--- |
| Math | RLA |
| Instruction | Instruction |}

Math Achievement?

Gifted Students

Full-Time Gifted
Academic Content
Program
$n=81 / 80$ schools
Part-Time Gifted in
Mathematics
Academic Content
Area
$n=11 / 14$ schools

Part-Time Gifted in
Reading/LA
Academic Content
Area
$n=30 / 31$ schools
GT Reading/LA
 Schools On Math Achievement

Gifted Students

Part-Time Gifted in
Mathematics
Academic Content
Area
$n=11 / 14$ schools
Part-Time Gifted in
Reading/LA
Academic Content
Area
$n=30 / 31$ schools

Effect of Gifted Math Program in Part-Time Schools On

Math Achievement

Gifted Students

Full-Time Gifted
Academic Content
Program
$n=81 / 80$ schools
Part-Time Gifted in
Mathematics
Academic Content
Area
$n=11 / 14$ schools

Part-Time Gifted in
Reading/LA
Academic Content
Area
$n=30 / 31$ schools

Effect of Gifted Language Arts Program in Full-Time Schools On

Language Arts Achievement

Gifted Students
Full-Time Gifted
Academic Content
Program
$n=81 / 80$ schools

Part-Time Gifted in
Mathematics
Academic Content
Area
$n=11 / 14$ schools

Part-Time Gifted in
Reading/LA
Academic Content Area
$n=30 / 31$ schools

Effect of Gifted Part-Time Program in Part-Time Schools On
 Language Arts Achievement

Causal Comparisons for Two Subjects

Subject	Treatment	Control	Comparison	Outcome
Mathematics	Gifted Math Program in Full-Time Schools	No Gifted Math Program in Part-Time Language Arts Schools	Gifted Math (FT) vs. Regular Math	Math Achievement
	Gifted Math Program in Part-Time Math Schools	No Gifted Math Program in Part-Time Language Arts	Gifted Math (PT) vs. Regular Math	Math Achievement
Language Arts	Gifted Language Arts Program in Full-Time Schools	No Gifted Language Arts Program in Part- Time Math Schools	Gifted LA (FT) vs. Regular LA	Language Arts Achievement
	Gifted Language Arts Program in Part-Time Language Arts	No Gifted Language Arts Program in Part- Time Math Schools	Gifted LA (PT) vs. Regular LA	Language Arts Achievement
Schools				

Data

1. A diverse urban southern school district where some schools in the district provide full time gifted instruction (i.e. instruction in both mathematics and language arts) and other schools only provide gifted instruction in mathematics only or language-arts only.
2. Data from gifted students from $2^{\text {nd }}$ to $5^{\text {th }}$ grade for the $17 / 185^{\text {th }}$ grade cohort and the $16 / 175^{\text {th }}$ grade cohort
3. Data on type of gifted program in the school (full time, part-time math, or part-time language arts)
4. Dependent Variable $=5^{\text {th }}$ or $4^{\text {th }}$ grade score on Math or Language Arts State Assessment (We also examined the gain scores in Math or RLA but these results are not shown.)

Covariates

I. Student Level

1. Free-Reduced Price Lunch (FRPL) Status,
2. English Learner (EL) Status,
3. Female
4. Race/Ethnicity (White is the reference group):
A. Black,
B. Hispanic,
C. Asian,
D. Other
5. 2nd grade math and Reading/Language Arts(RLA) achievement at the student level
II. School Level
6. \%gifted,
7. \%EL,
8. \% FRPL,
9. \% Female
10. \% Black, \% Hispanic,\% Asian, \% Other,
11. average 2 nd grade math and RLA scores at the school level

Program Selection Effects

How do different types of gifted programs differ in the district?

Are there systematic differences between full time gifted programs versus part-time Math and part-time language arts programs?

Large Selection Effect Across Different Types of Programs

Academic Achievement, School Poverty, and Student Poverty by type of Gifted Program for $4^{\text {th }}$-grade

Figure 1:
Program Characteristics for Cohort 1, 4th Grade

- Schools with part-time language arts gifted instruction have lower levels of math achievement (335) compared to full-time (340) and part-time math schools (339) The part time LA schools have an effect size of .33 lower than full time gifted schools in math achievement. Part time LA schools also have an effect size of .27 lower than part time math schools in math achievement.

Schools with part-time language arts gifted instruction have higher levels of student poverty compared to full-time and part-time math schools

- Schools with Part-time gifted Mathematics instruction had lower levels of student poverty than full-time and part-time Language Arts Schools

Distribution of School \% FRPL

Distribution of School \% FRPL
by Program for 4th grade 15/16

Part-time language arts gifted instruction

Distribution of Avg. $2^{\text {nd }}$ Grade Math Achievement

Distribution of School Avg. 2nd Grade
Math Achievement by Program for 4th grade 15/16

Part-time language arts gifted instruction

[^0]
Distribution of Avg. $2^{\text {nd }}$ Grade RLA Achievement

Descriptive Statistics - For 16/17 $5^{\text {th }}$ grade cohort

Academic Achievement, School Poverty, and Student Poverty by type of Gifted Program, $4^{\text {th }} \& 5^{\text {th }}$ grade

Figure 1:
Program Characteristics for Cohort 1, 4th Grade

Figure 2:
Program Characteristics
for Cohort 1, 5th Grade

Descriptive Statistics - For 17/18 $5^{\text {th }}$ grade cohort

Academic Achievement, School Poverty, and Student Poverty by type of Gifted Program, $4^{\text {th }} \& 5^{\text {th }}$ grade

Figure 3:
Program Characteristics
for Cohort 2, 4th Grade

School FRPL

Mathematics Achievement

Student FRPL
by Program

Figure 4:
Program Characteristics
for Cohort 2, 5th Grade

Balance of Raw Unadjusted Sample for Full-Time Gifted Classes vs. Part-Time RLA Gifted Classes (i.e. Standardized Difference between Treatment and Control Groups)

Table 1:

Student Level Covariate	std.diff.
FRPL	-0.679^{*}
Female	-0.024
black	-0.65^{*}
hispanic	0.081
asian	0.149^{*}
white	0.403^{*}
other	0.042
ever_ELL	-0.217^{*}
$\mathbf{2}^{\text {nd }}$ Grade RLA	0.285^{*}
$\mathbf{2 n d}^{\text {nd }}$ Grade Math	0.221^{*}

Student N = 2303, School N = 111

School Level Covariates	Std. diff.
Gifted, proportion in school	1.052^{*}
Black, prop. in school	-0.732^{*}
FRPL prop. in school	-1.158^{*}
female prop. in school	-0.05
Hispanic prop. in school	0.171
Asian prop. in school	0.695^{*}
white prop. in school	0.753^{*}
other prop. in school	0.025
Ever_ELL prop. in school	-0.517^{*}
2nd $^{\text {nd }}$ rade, RLA, school avg.	1.448^{*}
2 $^{\text {nd }}$ Grade, Math, school avg.	1.258^{*}
Mean Standardized Difference	0.51
(i.e. Balance)	

Balance Comparisons

Table 2A: Mean Standardized Difference for Baseline,

Comparison	Outcome	Grade \& Cohort	Raw Data/Baseline
Gifted Math (FT) vs. Regular Math (PT-LA)	Math	Grade 4 Cohort 1	0.51
		Grade 5 Cohort 1	0.5
		Grade 4 Cohort 2	0.49
		Grade 5 Cohort 2	0.55
Gifted Math (PT) vs. Regular Math (PT-LA)	Math	Grade 4 Cohort 1	0.63
		Grade 5 Cohort 1	0.5
		Grade 4 Cohort 2	0.52
		Grade 5 Cohort 2	0.63
Gifted LA (FT) vs. Regular LA (PT-M)	LA	Grade 4 Cohort 1	0.31
		Grade 5 Cohort 1	0.29
		Grade 4 Cohort 2	0.25
		Grade 5 Cohort 2	0.43
Gifted LA(PT) vs. Regular LA (PT-M)	LA	Grade 4 Cohort 1	0.63
		Grade 5 Cohort 1	0.51
		Grade 4 Cohort 2	0.52
		Grade 5 Cohort 2	0.63

Balance Comparisons

Table 2B: Sample Size for Baseline

Comparison	Outcome	Grade \& Cohort	Raw Data/ Baseline	
			Students	Schools
Gifted Math (FT) vs. Regular Math (PT-LA)	Math	Grade 4 Cohort 1	2303	111
		Grade 5 Cohort 1	2291	111
		Grade 4 Cohort 2	2131	111
		Grade 5 Cohort 2	2252	111
Gifted Math (PT) vs. Regular Math (PT-LA)	Math	Grade 4 Cohort 1	566	41
		Grade 5 Cohort 1	578	44
		Grade 4 Cohort 2	576	44
		Grade 5 Cohort 2	482	44
Gifted LA (FT) vs. Regular LA (PT-M)	LA	Grade 4 Cohort 1	2247	92
		Grade 5 Cohort 1	2204	97
		Grade 4 Cohort 2	2076	97
		Grade 5 Cohort 2	2156	97
Gifted LA (PT) vs. Regular LA (PT-M)	LA	Grade 4 Cohort 1	569	41
		Grade 5 Cohort 1	560	44
		Grade 4 Cohort 2	577	44
		Grade 5 Cohort 2	482	44

Research Question

What is the effect of language arts and mathematics gifted classes on academic achievement of gifted students?

How well does optimal multilevel matching with network flows address selection in a clustered observational study?

Methods: Six Different Approaches to Compare Treatment and Control Groups

1. OLS without covariates
2. OLS with covariates
3. Propensity Score weighting without covariates
4. Propensity Score weighting with covariates

For the propensity score matching the extreme values were trimmed and stabilized based on the methods in Harder, Stuart, \& Anthony (2010).
5. Multi-level matching without covariates
6. Multi-level matching with covariates

Multilevel Matching based on the R package multi-match, which consists of a two-staged multilevel matching procedure (Pimentel, Page, \& Keele 2018)

Methods:

Propensity Score Weighting

1. Calculated a propensity score with the following covariates:

- Student Level:

FRPL, EL, Race/Ethnicity, 2nd grade math and reading/ELA achievement at the student level

- School Level:
\%gifted, \%EL, \% FRPL, \% Black, \% Hispanic, average 2nd grade math and reading/ELA scores at the school level

2. Used the propensity score to created an ATE inverse probability weight (IPW) for all observations
3. Extreme values were trimmed and stabilized based on the methods in Harder, Stuart, \& Anthony (2010). We bottom-coded the IPTW at 0.1 and top-coded the IPTW at 10 .
4. Estimated a weighted generalized linear model using propensity score weights as survey weights with the package svyglm in R

Methods:
 Multi-Level Matching

1. We used the R-package multiMatch to do a two stage multi-level matching of first matching students then matching schools (Pimentel, Page, \& Keele 2018).
2. We included the following variables for the student level matching:

FRPL, Black, Hispanic, 2nd grade math and reading/ELA achievement at the student level
3. For the school level matching, we used the following variables:
\%gifted, \% FRPL, \% Black, \% Hispanic, average 2nd grade math and reading/ELA scores at the school level.
4. MultiMatch uses fine balance at the school level which required converting all continuous variables into 6 -category ordinal variables. We also gave priority to school percent FRPL and school percent gifted.
5. We set the tolerance to .1 for the matching.
6. After matching, we estimated a multilevel model using the Ime package in R.

Results - Balance Comparisons

Comparison: Gifted Math(FT) vs. Regular Math
 Outcome: Math

Balance measured with the mean standardized difference for of all covariates
Table 1: Mean Standardized Difference for Baseline, Propensity Score Weighting, and Multilevel Matching

	OLS	Propensity Score Weighting	Multilevel Matching
Grade 4 Cohort 1	0.51	0.37	0.17
Grade 5 Cohort 1	0.5	0.32	0.12

(Note: highlighted cells have adequate balance due to small differences between covariate means. We define an adequate balance as a mean standardized difference of less than .2)

Table 1B: Sample Size for Baseline, Propensity Score Weighting, and Multilevel Matching

	OLS		Propensity Score Weighting		Multilevel Matching	
	Students	Schools	Students	Schools	Students	Schools
Grade 4 Cohort 1	2303	111	2303	111	512	56
Grade 5 Cohort 1	2291	111	2291	111	468	52

Results - Balance Comparisons

Table 2A: Mean Standardized Difference for Baseline, Propensity score Weighting, and Multilevel Matching

Comparison	Outcome	Grade \& Cohort	OLS	Propensity Score Weighting	Multilevel Matching
Gifted Math (FT) vs. Regular Math (PT-LA)	Math	Grade 4 Cohort 1	0.51	0.37	0.17
		Grade 5 Cohort 1	0.5	0.32	0.12
		Grade 4 Cohort 2	0.49	0.36	0.18
		Grade 5 Cohort 2	0.55	0.21	0.15
Gifted Math (PT) vs. Regular Math (PT-LA)	Math	Grade 4 Cohort 1	0.63	0.41	0.33
		Grade 5 Cohort 1	0.5	0.24	0.33
		Grade 4 Cohort 2	0.52	0.26	0.2
		Grade 5 Cohort 2	0.63	0.53	0.27
Gifted LA (FT) vs. Regular LA (PT-M)	LA	Grade 4 Cohort 1	0.31	0.35	0.16
		Grade 5 Cohort 1	0.29	0.38	0.19
		Grade 4 Cohort 2	0.25	0.31	0.33
		Grade 5 Cohort 2	0.43	0.36	0.54
Gifted LA(PT) vs. Regular LA (PT-M)	LA	Grade 4 Cohort 1	0.63	0.41	0.29
		Grade 5 Cohort 1	0.51	0.27	0.4
		Grade 4 Cohort 2	0.52	0.26	0.25
		Grade 5 Cohort 2	0.63	0.53	0.37

Table 2B: Sample Size for Baseline, Propensity Score Weighting, and Multilevel Matching

Comparison	Outcome	Grade \& Cohort	OLS		Propensity Score Weighting		Multilevel Matching	
			Students	Schools	Students	Schools	Students	Schools
Gifted Math (FT) vs. Regular Math (PT-LA)	Math	Grade 4 Cohort 1	2303	111	2303	111	512	56
		Grade 5 Cohort 1	2291	111	2291	111	468	52
		Grade 4 Cohort 2	2131	111	2131	111	500	56
		Grade 5 Cohort 2	2252	111	2252	113	451	52
Gifted Math (PT) vs. Regular Math (PT-LA)	Math	Grade 4 Cohort 1	566	41	566	41	107	14
		Grade 5 Cohort 1	578	44	578	44	218	28
		Grade 4 Cohort 2	576	44	576	45	183	26
		Grade 5 Cohort 2	482	44	482	35	127	14
Gifted LA (FT) vs. Regular LA (PT-M)	LA	Grade 4 Cohort 1	2247	92	2247	92	419	22
		Grade 5 Cohort 1	2204	97	2204	97	424	30
		Grade 4 Cohort 2	2076	97	2076	94	238	26
		Grade 5 Cohort 2	2156	97	2156	94	119	14
Gifted LA (PT) vs. Regular LA (PT-M)	LA	Grade 4 Cohort 1	569	41	569	41	92	14
		Grade 5 Cohort 1	560	44	560	44	166	24
		Grade 4 Cohort 2	577	44	577	45	192	26
		Grade 5 Cohort 2	482	44	482	35	122	14

Results - OLS Analysis

Comparison: Gifted Math(FT) vs. Regular Math

Outcome: Math

Outcome	Cohort	Grade	Ordinary Least Squares Regression		Propensity Score Weighting	Multi-level Matching
			No Covariates	With Covariates		
	1	$4^{\text {th }}$	0.30 *	0.02		
			[0.07]	[0.07]		
	1	$5^{\text {th }}$	0.16	-0.16		
			[0.07]	[0.07]		

Notes: * p -value<=.01; Statistically significant coefficients are highlighted; Standard Error in Brackets; Covariates = FRPL Status; EL Status; Black, Hispanic, Asian, and other; 2nd grade math and reading/RLA achievement at the student level; and \%gifted, \%EL, \% FRPL, \% Black, \% Hispanic, average 2nd grade math and reading/RLA scores at the school level; Standardized Coefficients

Results - Propensity Score Weighting

Comparison: Gifted Math(FT) vs. Regular Math

 Outcome: Math| Cohort | Grade | Ordinary Least Squares Regression | | Propensity Score Weighting | | Multi-level Matching |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | No Covariates | With Covariates | No Covariates | With Covariates | |
| 1 | $4^{\text {th }}$ | 0.30 * | 0.02 | 0.18 | -0.01 | |
| | | [0.07] | [0.07] | [0.11] | [0.08] | |
| 1 | $5^{\text {th }}$ | 0.16 | -0.16 | -0.13 | -0.22 * | |
| | | [0.07] | [0.07] | [0.10] | [0.08] | |

Notes: *= p-value<=.01; Statistically significant coefficients are highlighted; Standard Error in Brackets; Covariates = FRPL Status; EL Status; Black, Hispanic, Asian, and other; 2nd grade math and reading/RLA achievement at the student level; and \%gifted, \%EL, \% FRPL, \% Black, \% Hispanic, average 2nd grade math and reading/RLA scores at the school level; Standardized Coefficients

Results - Multi-level Matching

Comparison: Gifted Math(FT) vs. Regular Math

 Outcome: Math| Cohort | Grade | Ordinary Least Squares Regression | | Propensity Score Weighting | | Multi-level Matching | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | No Covariates | With Covariates | No Covariates | With Covariates | No
 Covariates | With Covariates |
| 1 | $4^{\text {th }}$ | 0.30 * | 0.02 | 0.18 | -0.01 | -0.09 | -0.14 |
| | | [0.07] | [0.07] | [0.11] | [0.08] | [0.14] | [0.15] |
| 1 | $5^{\text {th }}$ | 0.16 | -0.16 | -0.13 | -0.22 * | -0.18 | -0.26 * |
| | | [0.07] | [0.07] | [0.10] | [0.08] | [0.10] | [0.10] |

Notes: *= p-value<=.01; Statistically significant coefficients are highlighted; Standard Error in Brackets; Covariates = FRPL Status; EL Status; Black, Hispanic, Asian, and other; 2nd grade math and reading/RLA achievement at the student level; and \%gifted, \%EL, \% FRPL, \% Black, \% Hispanic, average 2nd grade math and reading/RLA scores at the school level; Standardized Coefficients

Results: Gifted Math (Full-Time) vs. Regular Math

Comparison: Gifted Math (FT) vs. Regular Math (in schools with part time gifted LA classes)
Outcome: Math
Table 3:

Comparison	$\begin{aligned} & \text { Cohor } \\ & t \end{aligned}$	Grade	Ordinary Least Squares Regression		Propensity Score Weighting		Multi-level Matching	
Gifted Math			No Covariates	With Covariates	No Covariates	With Covariates	No Covariates	With Covariates
(Full-Time)	1	$4^{\text {th }}$	0.30 *	0.02	0.18	-0.01	-0.09	-0.14
vs. Reg.			[0.07]	[0.07]	[0.11]	[0.08]	[0.14]	[0.15]
Math	1	$5^{\text {th }}$	0.16	-0.16	-0.13	-0.22 *	-0.18	-0.26 *
			[0.07]	[0.07]	[0.10]	[0.08]	[0.10]	[0.10]
	2	$4^{\text {th }}$	0.22 *	-0.14	-0.03	-0.14	-0.2	-0.22
			[0.07]	[0.07]	[0.09]	[0.09]	[0.13]	[0.14]
	2	$5^{\text {th }}$	0.29 *	-0.09	-0.01	0.04	0.09	0.03
			[0.08]	[0.08]	[0.2]	[0.15]	[0.16]	[0.15]

Notes: ${ }^{*}=\mathrm{p}$-value<=.01; Statistically significant coefficients are highlighted; Standard Error in Brackets; Standardized Coef.
Key Findings:

- No Positive Statistically Significant Effect of Math Instruction with OLS with covariates, propensity score weighting or multi-level matching models
- Cohort 2 can be viewed as a replication of cohort 1 and we find little consistency between the $4^{\text {th }}$ and $5^{\text {th }}$ grade cohort 1 statistically significant results and the $4^{\text {th }}$ and $5^{\text {th }}$ grade statistically significant results

Results: Gifted Math (Part-Time) vs. Regular Math

Comparison: Gifted Math (PT) vs. Regular Math (in schools with part time gifted LA classes)
Table 4: Outcome: Math

Comparison	Cohort	Grade	Ordinary Least Squares Regression		Propensity Score Weighting		Multi-level Matching	
Gifted Math			No Covariates	With Covariates	No Covariates	With Covariates	No Covariates	With Covariates
(Part-Time)	1	$4^{\text {th }}$	0.16	-0.19	0.09	-0.16	-0.2	-0.24
vs. Reg. Math			[0.06]	[0.08]	[0.08]	[0.07]	[0.21]	[0.28]
	1	$5^{\text {th }}$	0.02	-0.06	-0.08	-0.13	0	0.06
			[0.06]	[0.08]	[0.1]	[0.09]	[0.15]	[0.13]
	2	$4^{\text {th }}$	0.08	0.06	0.05	0.06	0.16	0.27
			[0.07]	[0.07]	[0.09]	[0.07]	[0.16]	[0.15]
	2	$5^{\text {th }}$	0.05	0.16	0.07	0.1	0.14	0.08
			[0.08]	[0.11]	[0.09]	[0.12]	[0.14]	[0.19]

Notes: *= p-value<=.01; Statistically significant coefficients are highlighted; Standard Error in Brackets; Standardize Coef.
Key Findings:

- No positive and statistically significant effects of gifted Math instruction with OLS, propensity score weighting or multi-level matching models
- Cohort 2 can be viewed as a replication of cohort 1 , we find consistent results for cohorts 1 and 2

Results: Gifted LA (Full-Time) vs. Regular LA

Comparison: Gifted LA (FT) vs. Regular LA (in schools with part time gifted Math classes)
Table 5: Outcome: Language Arts

Comparison	Cohort	Grade	Ordinary Least Squares Regression		Propensity Score Weighting		Multi-level Matching	
Gifted LA			No Covariates	With Covariates	No Covariates	With Covariates	No Covariates	With Covariates
(Full-Time)	1	$4^{\text {th }}$	0.01	0.03	0.28	0.05	0.15	0.2
vs. Reg. LA			[0.07]	[0.06]	[0.11]	[0.08]	[0.13]	[0.14]
	1	$5^{\text {th }}$	-0.01	-0.16	0.31	0.04	-0.04	0
			[0.07]	[0.07]	[0.14]	[0.1]	[0.13]	[0.11]
	2	$4^{\text {th }}$	0.09	0.06	0.14	0.14	-0.19	-0.29
			[0.07]	[0.07]	[0.12]	[0.09]	[0.12]	[0.13]
	2	$5^{\text {th }}$	-0.13	-0.18	-0.22	-0.08	-0.05	-0.39
			[0.08]	[0.09]	[0.36]	[0.28]	[0.27]	[0.6]

Notes: * ${ }^{*}$ p-value<=.01; Statistically significant coefficients are highlighted; Standard Error in Brackets; Standardized Coef.
Key Findings:

- No Positive Statistically Significant Effect of Gifted Language Arts Instruction with OLS, propensity score weighting or multi-level matching models
- Findings from cohort 2 are consistent with findings from cohort 1

Results: Gifted LA (Part-Time) vs. Regular LA

Table 5: Outcome: Language Arts

Comparison	Cohort	Grade	Ordinary Least Squares Regression		Propensity Score Weighting		Multi-level Matching	
			No Covariates	With Covariates	No Covariates	With Covariates	No Covariates	With Covariates
Gifted LA	1	$4^{\text {th }}$	-0.22*	-0.01	-0.17	-0.02	-0.08	0.19
(Part-Time)			[0.06]	[0.07]	[0.07]	[0.07]	[0.14]	[0.15]
vs. Reg. LA	1	$5^{\text {th }}$	-0.22*	-0.01	-0.08	0.01	0.1	-0.02
			[0.07]	[0.07]	[0.08]	[0.08]	[0.12]	[0.17]
	2	$4^{\text {th }}$	-0.23*	0.01	-0.09	-0.02	0.02	0.07
			[0.07]	[0.08]	[0.09]	[0.08]	[0.14]	[0.13]
	2	$5^{\text {th }}$	0.41*	-0.34*	-0.49 *	-0.44*	-0.34	-0.26
			[0.08]	[0.12]	[0.09]	[0.12]	[0.2]	[0.39]

Notes: "= p-vaıue<=.U1; statıstıcalıy sıgnıticant coetticıents are nıgniggntea; stangara trror in brackets; stanaaraized Coef.
Key Findings:

- No Positive Effect of Gifted Language Arts Instruction with OLS, propensity score weighting or multi-level matching models
- Limited consistency between the $4^{\text {th }}$ and $5^{\text {th }}$ grade cohort 1 statistically significant results and the $4^{\text {th }}$ and $5^{\text {th }}$ grade statistically significant results

Sensitivity Tests

1. A Comparison of Matching Strategies
2. Comparison of Strategies used to identify school level variables used with fine balance
3. The impact of prioritization with skewed and balanced covariates

Comparison of Matching Strategies for the Full-time Gifted vs. Part-time Language Arts Comparison

Matching Strategy	Mean Standardized Difference	Student N	School N
Match School only	.45	1082	60
Match School and Students	.39	605	60
Match School and Students with fine balance without prioritizing	.29	279	22
Match School and Students with fine balance and prioritizing \%FRPL and \% gifted at the school level	.17	512	56

Comparison of Different Sets of Covariates Used for Fine Balance

for the Full-time Gifted vs. Part-time Language Arts Comparison

Covariates Used for Fine Balance	MSD	Student N	School N
Raw Standardized Diff. >=. 7 (\% FRPL school mean, 2nd grade Math and ELA mean, \% gifted school mean, \% black \& \% white school mean; Prioritizing \% FRPL then \% gifted)	. 23	539	60
Raw Standardized Diff. >=1.1 (\% FRPL school mean, $2^{\text {nd }}$ grade Math and ELA school mean; Prioritizing \% FRPL)	. 19	489	56

All School Level Covariates (Prioritizing \% FRPL then \% gifted)	.18	489	56
Theoretically informed subset of variables (FRL, Black, Latino, and 2nd grade each. At the school and student level plus \% gifted at school level ; Prioritizing \% FRPL then \% gifted)	.17	512	56

Comparison of Different Variables Used for Prioritization for the Full-time Gifted vs. Part-time Language Arts Comparison

| Prioritization
 Variable | Mean
 Standardized
 Difference | Student N | School
 N | RLA School
 Avg. Std. Diff. | Math School
 Avg. Std.
 Diff. | \% FRL
 School Avg.
 Std. Diff. | \% Gifted
 School Avg.
 Std. Diff. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prioritizing \%FRPL
 and \% gifted at the
 school level | .17 | 512 | 56 | $.556^{*}$ | $.304^{*}$ | $-.572^{*}$ | .020 |
| Prioritizing school
 avg. RLA and avg.
 Math | .14 | 363 | 38 | .106 | .029 | $-.668^{*}$ | .112 |
| Prioritizing \%FRPL | .17 | 512 | 56 | $.556^{*}$ | $.304^{*}$ | $-.572^{*}$ | .228 |
| Prioritizing \% Gifted | .24 | 550 | 60 | $.704^{*}$ | $.491^{*}$ | $-.765^{*}$ | .041 |
| Raw Data for
 Reference: | .51 | 2303 | 111 | 1.448^{*} | 1.258^{*} | -1.158^{*} | 1.052^{*} |

Distribution of School \% FRPL

Distribution of School \% FRPL
by Program for 4th grade 15/16

Part-time language arts gifted instruction

Distribution of Avg. $2^{\text {nd }}$ Grade Math Achievement

Distribution of School Avg. 2nd Grade
Math Achievement by Program for 4th grade 15/16

Part-time language arts gifted instruction

[^1]
Distribution of Avg. $2^{\text {nd }}$ Grade RLA Achievement

Conclusion

- No Effect of Gifted RLA or Gifted Math Classes on Academic Achievement. Multiple methods found no effect:
- Simple OLS with Covariates
- Propensity Score Weighting
- Multilevel Optimal Matching
- In our case of highly unbalanced data, Multilevel Optimal Matching was able to identify more balanced sample compared to the balance achieved with propensity score weighting in 13 out of 16 comparisons.
- Half of the matched samples had a balance less than .2. However, balance was obtained by substantially decreasing the sample size.
- Sensitivity tests (with one comparison) find:
- Multilevel Optimal Matching required the use of both fine balance and prioritizing school level covariates to obtain a balance less than . 2
- Theoretically Informed Selection of covariates performed better than covariates for fine balance selected only by level of mean standardized difference
- Symmetric distributions balance better than highly skewed distributions

[^0]: \# of bins=20 for each histogram

[^1]: \# of bins=20 for each histogram

