

The Policy & Research Group New Orleans | Seattle



Unpacking the Logic Model: A Discussion of Mediators and Antecedents of Educational Outcomes from the Investing in Innovation (i3) program September 9, 2020

Presenters:

Katie Lass, The Policy & Research Group Hannah D'Apice, Empirical Education & Stanford University Audra Wingard, Empirical Education Thanh Nguyen, Empirical Education

Discussant:

Anne Wolf, Abt Associates



#### Investing In Innovation (i3)

#### **Tiered Evidence Grants**

Develop and test innovative education practices that show promise of effectiveness

- Katie Lass, Peer Group Connection (RCT)
- Hannah D'Apice, Enhanced Units (RCT)
- **Development** Audra Wingard, CREATE (QED)

Further develop innovative education practices and regionally or nationally scale those practices. Moderate prior evidence of effectiveness.

• Thanh Nguyen, Making Sense of SCIENCE (RCT)

Validation

Programs supported by strong prior evidence of effectiveness. Improve outcomes for an increased number of high-need students and generate information about the students and contexts for which a practice is most effective.

Scale-Up

The Policy & Research Group



The Policy & Research Group New Orleans | Seattle



Impact on Antecedents of Student Dropout in a Cross-Age Peer Mentoring Program

Katie Lass, The Policy & Research Group Sarah Walsh, The Policy & Research Group Eric Jenner, The Policy & Research Group Sherry Barr, Center for Supportive Schools



#### **Federal Funding Acknowledgement and Disclaimer**

This presentation was made possible by Grant Number U411C150048 from the U.S. Department of Education, Office of Elementary and Secondary Education. Its contents are solely the responsibility of The Policy & Research Group and do not necessarily represent the official views of the U.S. Department of Education, Office of Elementary and Secondary Learning.

# **Peer Connection Study Overview**

# Implementation Years: 2016-17, 2017-18, 2018-19 Study partners:

- Intervention developer Center for Supportive Schools
- Independent evaluator The Policy & Research Group
- Implementation sites 6 high schools in rural North Carolina

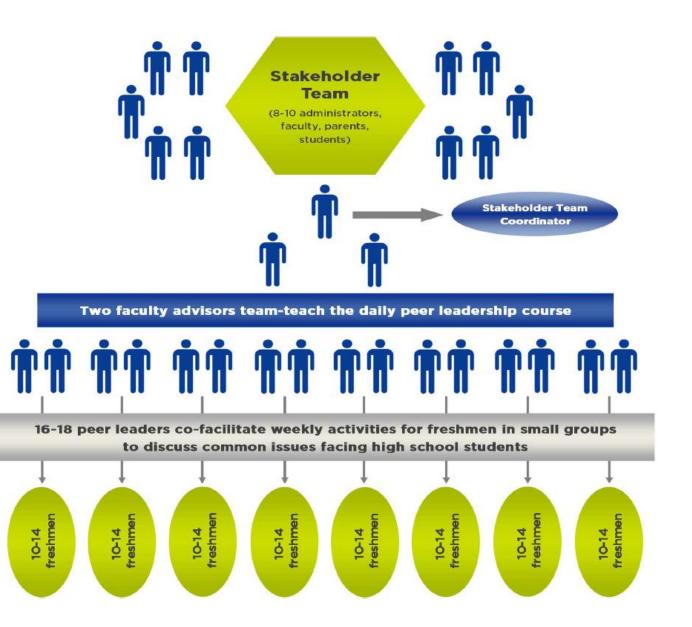
#### Study design:

- Randomized Controlled Trial (RCT) targeting 9<sup>th</sup> grade students
- Primary outcomes of interest daily attendance and credit accrual
- Exploratory outcomes of interest disciplinary events, engagement, educational outlook, social and emotional skills
- Data collection school records and pre- and post-program questionnaire



# **Peer Group Connection-High School**

Equipping older students to help 9<sup>th</sup> graders transition to high school


| What | Peer-to-peer group mentoring model that trains and mobilizes older/more experienced students to help ease the transition into high school for incoming students |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| When | <ul> <li>Daily leadership course for credit for student leaders (11<sup>th</sup>/12<sup>th</sup> graders)</li> </ul>                                            |  |  |
|      | <ul> <li>Weekly group mentoring sessions for 9<sup>th</sup> graders led by trained student leaders</li> </ul>                                                   |  |  |
| Why  | Enhance student engagement                                                                                                                                      |  |  |
|      | Build leadership, academic, social, and emotional skills                                                                                                        |  |  |
|      | Support academic outcomes (remaining in school, student                                                                                                         |  |  |

 Support academic outcomes (remaining in school, student achievement, increased attendance, lower suspension rates, and, ultimately, graduation from high school)





# Intervention Structure



The Policy & Research Group

#### PEER GROUP CONNECTION (PGC): High School Transition & Cross-Age Peer Mentoring Program

GOAL: Improve adolescent education outcomes by promoting mediating factors that (1) improve students' non-cognitive abilities and (2) enhance student engagement through a school-based youth development program that utilizes the power of older students to effect positive changes for younger students.

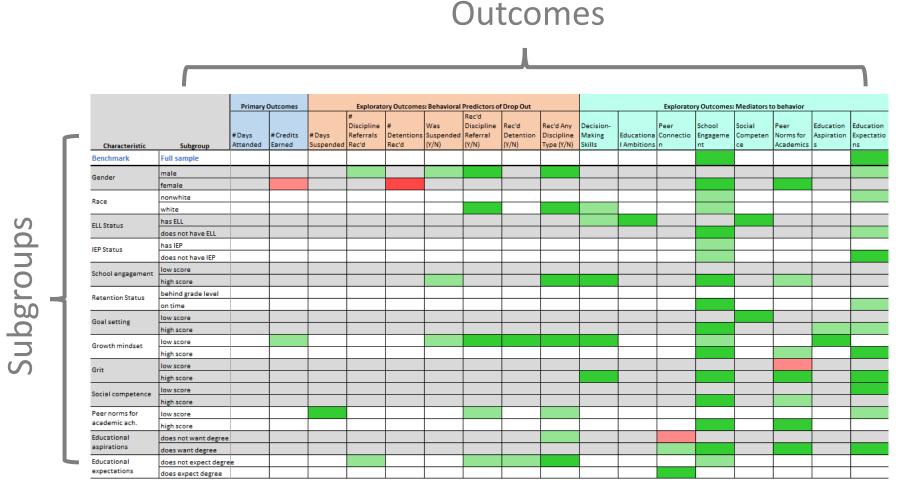
| Inputs                                                                                                                                                                                                                                                        | Key Components<br>Offered and Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mediators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Student Outcomes<br>Short-term Long-term                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i3 funding<br>Matching<br>funding<br>CSS staff<br>North Carolina<br>LEA staff and<br>resources<br>Partner and<br>consultant<br>resources<br>Ongoing<br>technical<br>support<br>Fully<br>developed<br>PGC<br>curriculum<br>Support from<br>stakeholder<br>team | Stakeholder Team         • Holds planning meetings         • Supports Faculty Advisors         Faculty Advisors         • Offered training (11 days)         • Select Peer Leaders         • Offered 3-day leadership retreat         • Offered 12-hour mid-program retreat         • Offered 12-hour mid-program retreat         • Enrolled in daily Leadership         Development Course during regular         school hours         • 4 days per week receive         training         • 1 day per week conduct         Outreach Sessions         Freshman PGC Participants         • Offered five-hour 9 <sup>th</sup> Grade Activity         Day with PGC participants, peer         • Offered Family Night to 9 <sup>th</sup> graders, peer leaders, and faculty advisors         • Offered weekly Outreach Sessions in groups of 10-14 with 2 Peer Leaders         • Minimum of 18 45-minute sessions         • Using most up-to-date version of PGC curriculum         • Service learning project | Improvements in Non-Cognitive Abilities and Enhanced Student Engagement         • Increased perceived connectedness among peers         • Increased school engagement/attachment         • Increased perception of peer support for academic engagement/attachments         • Increased educational aspirations         • Increased competence in peer relationships         • Increased self-efficacy in goal-setting skills         • Increased decision-making skills         • Increased grit | Increased days of<br>attendance (i.e.,<br>staying in school)<br>Increased credits<br>earned towards high<br>school graduation<br>(i.e., progressing in<br>school) |

#### Logic Model



# **Exploratory Impact Analysis Methods**

Going beyond ITT effects


| Research Questions                                                                              | Predictors                                                                                                                       | Analysis                                                                                  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Are there variations in PGC-HS's impact for different subgroups of students?                    | <ul> <li>Demographic characteristics</li> <li>Baseline attitudes and SEL skills</li> </ul>                                       | Interaction term (TX*predictor)                                                           |
| Are there variations in PGC-HS's impact under different school-level implementation conditions? | <ul> <li>Number and type of sessions offered</li> <li>Length of programming</li> <li>Previous experience implementing</li> </ul> | Interaction term (TX*predictor)                                                           |
| What are the Complier Average<br>Causal Effects (CACE) of<br>participating fully in PGC?        | <ul> <li>Compliance</li> <li>Baseline predictors of compliance</li> </ul>                                                        | <ul> <li>Two-stage least squares regression</li> <li>Principal score weighting</li> </ul> |



#### For which outcomes are there variations in effect?

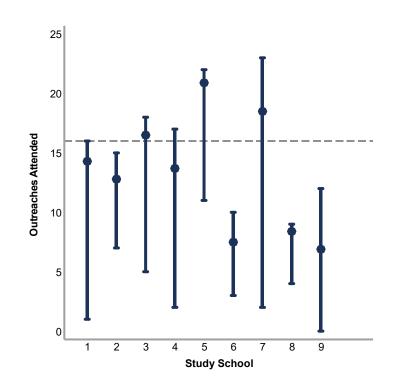
For which subgroups are there variations in outcomes?

# **Subgroup Analyses**





## Under what implementation conditions do impacts vary?


| School-level Measures      | Definition of contrasts                                                                    |                                                                                                      |  |
|----------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Number of sessions offered | Offered at least 18 sessions<br>(minimum fidelity requirement)<br>6 schools                | Offered less than 18 sessions (did<br>not meet fidelity requirements)<br>3 schools                   |  |
| Type of sessions offered   | Offered all of the required types of sessions (to meet fidelity requirements)<br>4 schools | Failed to offer at least one of the required sessions (did not meet fidelity requirements) 5 schools |  |
| Length of programming      | Offered PGC-HS for the fall semester only 7 schools                                        | Offered PGC-HS for the entire academic year<br>2 schools                                             |  |
| Experience with program    | First year implementing PGC-HS 5 schools                                                   | Second year implementing PGC-HS <i>4 schools</i>                                                     |  |



Complier Average Causal Effect

# How much of the program do students need for it to have an effect?

- Dosage varied widely
- Full participation defined as attending 16 or more outreach sessions (39% compliance)
- Compared two common approaches:
  - Instrumental variable twostage least squares regression
  - Principal score weighting



Stuart & Jo (2015) Assessing the sensitivity of methods for estimating principal causal effects. Statistical Methods in Medical Research, 24(6): 657-674.

#### The Policy & Research Group



# **Key Findings**

| Study                        | Results                                                                                                                                                                                                                                                                                                                                      |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subgroup<br>Analyses         | <ul> <li>PGC appears to have a stronger (more significant) impact on reducing disciplinary events with:</li> <li>Male students</li> <li>Students who had a negative growth mindset attitude</li> <li>Students who didn't expect to receive a college degree</li> </ul>                                                                       |
| Implementation<br>Conditions | <ul> <li>When schools offer a minimum of 18 sessions, offer the required type of sessions, and/or are offering the program for the first time, students in PGC group:</li> <li>Were less likely to receive a disciplinary infraction</li> <li>Scored higher on school engagement</li> <li>Scored higher on measures of SEL skills</li> </ul> |
| CACE                         | <ul> <li>Attending 16 or more outreach sessions was associated with:         <ul> <li>Reduced likelihood of suspension</li> <li>Higher GPAs</li> <li>Higher scores on SEL skills, engagement, and educational mindset</li> </ul> </li> </ul>                                                                                                 |

**Next Steps:** Examine impact on long-term outcomes beyond 9<sup>th</sup> grade



The Policy & Research Group New Orleans | Seattle



#### Thank you!

Katie Lass, MPH, LMSW The Policy & Research Group katie@policyandresearch.com

Sherry Barr, Psy.D. Center for Supportive Schools sbarr@supportiveschools.org



EMPOWERING EDUCATORS THROUGH EVIDENCE AND INSIGHT

September 2020

#### Supporting Content-area Learning in Biology and U.S. History



empiricaled



empiricaleducation



empirical-education



empiricaleducation



empiricaleducation

Empiricaleducation.com

© 2020 Empirical Education Inc.







#### Presenters



Hannah D'Apice, Research Manager & Stanford Doctoral Student



Andrew Jaciw, Chief Scientist



#### Jenna Zacamy, VP of Research Ops



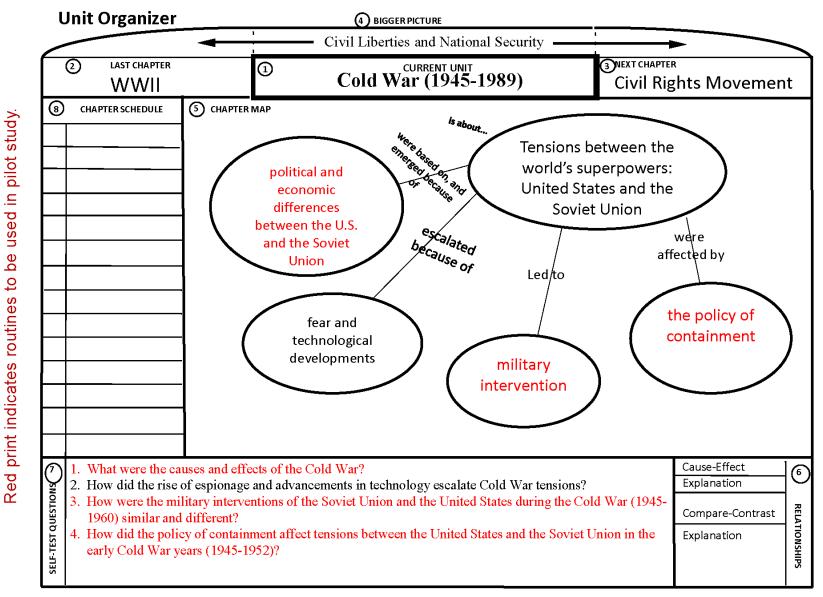
#### Li Lin, Statistician





- What are *Enhanced Units*?
- Study overview
- Results
- Conditions to support impact
- Areas for improvement & follow-on research

#### **Enhanced Units**


- Developed by SRI, CAST, and research and practitioner partners
- Goal to improve student content learning and higher order reasoning in secondary school, especially for students with learning challenges
- Funded by i3 Development grant (2014)



#### **Enhanced Units**

- Integrated research-based content enhancement routines (CER)s
- Routines used in the study are based on the Strategic Instruction Model (SIM)
  - unit organizers
  - question/exploration guides
  - cause and effect guides
  - comparison (compare and contrast) tables
- CORGI online CER component





Originally developed, validated and copyrighted, 'The Unit Organizer Routine' by B. Keith Lenz, Janis A. Bulgren, Jean B. Schumaker, Donald D. Deshler, and Daniel A. Boudah. Edge Enterprises Inc. (1994). The authors have granted their permission to SRI International to adapt the Unit Organizer Routine and display and distribute the adaptation on corgi.sri.com via an application hosted by Google, funded by the U.S. Department of Education, Investing in Innovation (i3) Development Grant #U411C140003. The contents of this document were developed under the i3 grant from the Department of Education. However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government.

## EU Logic Model



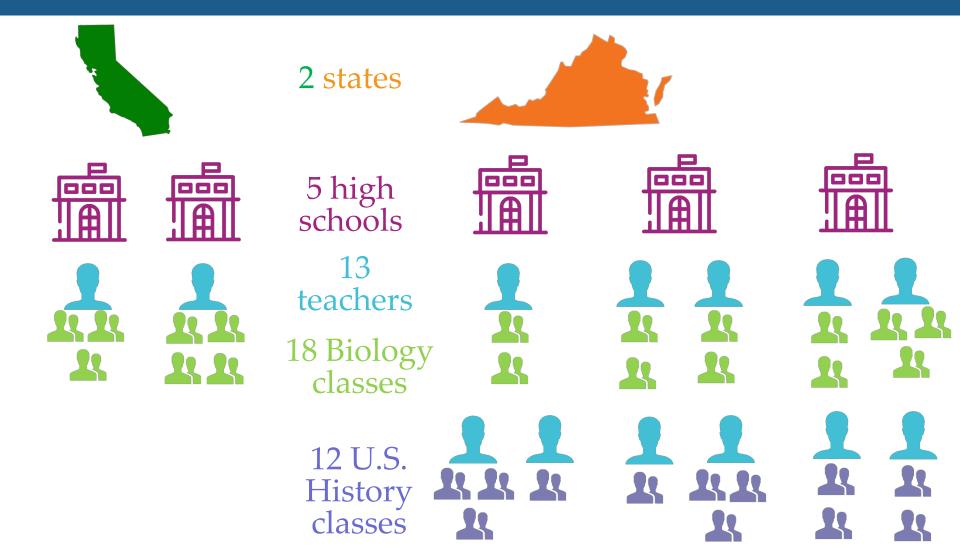
| INPUT                                                                                                                                                                 | PROXIMAL OUTPUTS                                                                                                                                                                                 | LONGER TERM<br>OUTPUTS                                                                              | TEACHER<br>OUTCOMES                                                                 | STUDENT<br>OUTCOMES                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|
| <u>Classroom level</u>                                                                                                                                                | Teacher                                                                                                                                                                                          | Teacher                                                                                             | Teacher                                                                             | <u>Student</u>                            |
| Biology and U.S. History teachers receive curricular materials for i3 <i>EU</i>                                                                                       | Key Component 2: Teacher use of <i>EU</i> :<br>Biology and U.S. History teachers use <i>EU</i> .                                                                                                 | Improved<br>implementation of,                                                                      | Improved/ increased implementation of SIM                                           | Improved<br>achievement on end-           |
| Key Component 1: Biology and U.S. —<br>History teachers receive sufficient<br>support:                                                                                | Biology and U.S. History teachers implement<br>one practice <i>EU</i> and two study <i>EU</i> s as per<br>study design. Teachers deliver quality<br>instruction, adhere to dosage, and report on | adherence to, and<br>→ quality of EU<br>instructional practices;<br>improved<br>effectiveness of EU | strategies (particularly<br>the content<br>enhancement routines<br>specified in EU) | of-unit content<br>assessment<br>measures |
| In-Person PD: Biology and U.S. History<br>teachers receive sufficient support to<br>use i3 <i>EU</i> materials by attending 3 days<br>of PD                           | likely effectiveness of the intervention on student performance.                                                                                                                                 |                                                                                                     |                                                                                     |                                           |
| Ongoing coaching: Biology and U.S.<br>History teachers receive sufficient<br>support by receiving at least 8 hours of<br>coaching from SIM professional<br>developers | ↓<br><u>Student</u><br>Students understand the purpose and<br>application of the <i>EU</i> s in their biology and<br>U.S. History classes                                                        |                                                                                                     |                                                                                     |                                           |

#### 2018 Field Study Primary & Secondary Research Questions

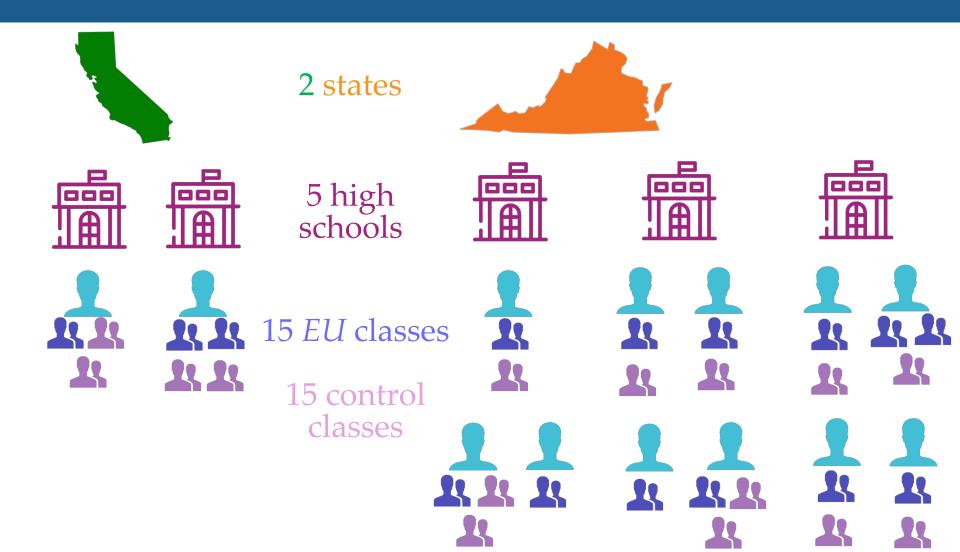


Primary questions compared participants to the scores of similar grade BAU students:

- Did students in grades 9-12 who attended HS *EU* **Biology** classes demonstrate higher order content knowledge in the **Biology** unit test scores?
- Did 11th grade students who attended HS *EU* **U.S. History** classes demonstrate higher order content knowledge in the **U.S. History** unit test scores?
- Did both groups of *EU* students, as a group, demonstrate higher order content knowledge in their respective unit test scores?


Secondary questions are the same, but specific to students that received special education services.

# 2018 Field Study Exploratory Research Questions




- Is there a difference in impact on student achievement depending on:
  - o teachers' self-reported levels of comfort with technology?
  - biology content area, specifically, evolution compared to ecology?
- Is there a positive impact of *EU* on achievement by Biology content area, or by U.S. History content area?
- What is the level of the treatment-control contrast in the use of SIM instructional practices deemed central to implementation of *EU*?
- Is there evidence that *EU* had impact on instructional practices posited to mediate impacts on student achievement?

# 2018 Field Study: Design (Spring semester of 2017/18 school year)



# 2018 Field Study: Design (Spring semester of 2017/18 school year)



# 2018 Field Study: Data (Spring semester of 2017/18 school year)

| <b>D</b> 1 | 1 •  |
|------------|------|
| Basel      | 1100 |
| Dasci      |      |
|            |      |

#### During implementation

#### End of study

- Teacher baseline survey
- Class rosters
- Student demographics
- Daily implementation logs
- Instructional practice surveys
- End-of-unit student assessment – Cronbach alphas above .75 for all

- Student survey
- Teacher interviews

# Findings: Main Impact from 3-Level HLM Analysis



|                                 | Effect size | <i>p</i> value    | Change in percentile ranking |
|---------------------------------|-------------|-------------------|------------------------------|
| Biology                         |             |                   |                              |
| Unadjusted effect size          | 0.01        | .958              | 0%                           |
| Adjusted effect size            | 0.01        | .892              | 0%                           |
| U.S. History                    |             |                   |                              |
| Unadjusted effect size          | 0.33        | .214              | 12%                          |
| Adjusted effect size            | 0.32        | <mark>.037</mark> | 12%                          |
| Biology & U.S. History combined |             |                   |                              |
| Unadjusted effect size          | 0.14        | .516              | 6%                           |
| Adjusted effect size            | 0.14        | <mark>.067</mark> | 6%                           |

**Low Differential Attrition:** No classes were lost to attrition—we obtained outcomes for one or more students present at baseline in the classroom. Student attrition for the combined sample was 3.8% overall, and 2% differential. Low potential for bias.

**Sensitivity Analyses:** U.S. History and Combined results are robust in terms of their magnitudes; however, for U.S. History, the *p* values fluctuate around significance level .05.

Findings: Moderator Analyses (Combined Sample)



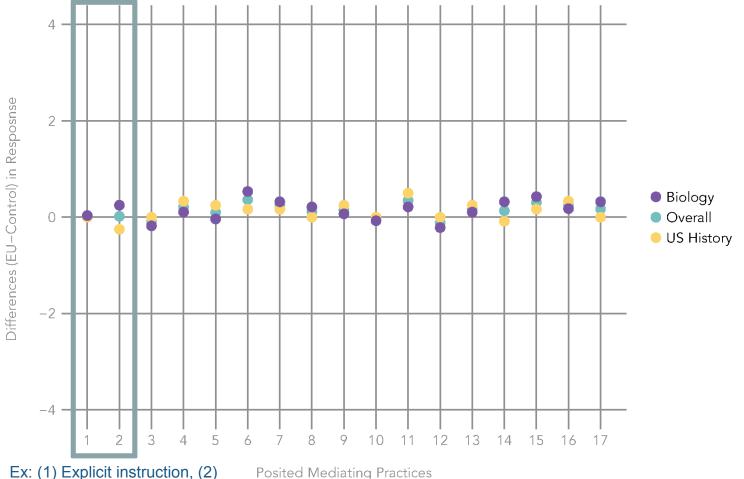
- Positive differential impact of *EU* on achievement, depending on disability status.
- No differential impact of *EU* on achievement, depending on level of teachers' baseline score on the Technological Pedagogical and Content Knowledge (TPAK).

# Findings: Impact *Within* Biology Units



# "

...the content of Enhanced Units best support student learning when they focus on a single topic, allow adequate time, and use instructional supports that all relate to the critical topic of the unit and build sequential understanding.


- Students on average experienced greater impact of *EU* on assessment of Evolution than Ecology.
- These results are considered exploratory.

# Findings: Conditions for Impact



- Fidelity of implementation not met system-wide. Indicators included:
  - teacher adherence
  - teacher quality of delivery
  - teacher-perceived usefulness of tools/strategies
  - student self-reported understanding
  - student self-reported collaboration
- Treatment-control contrast was strong based on use of SIM routines. No evidence of contamination.

## No Differences in Mediator Impacts



Reteach to a few students

#### Areas for Improvement

- Provide additional support for less-structured, lesssequential content
- Explore how content enhancement routines can be applied to a greater range of topics
- Adjust for operational challenges of technology tool: visual interface, usability, Google Drive interface
- Improve tools and strategies for students that may struggle with typing or prefer using paper



#### Follow-on research

- What mediates impact? Flesh out Logic Model, identify better measures of mediators
- Tease out impact for students with disabilities: look at different types of disabilities
- What is/are the best way(s) for teachers to present SIM routines to their students, particularly for students with learning challenges through SIM intervention?
  - Investigate how the routines can be applied to a greater range of topics.
  - Consider how introducing devices to the routines potentially presents steeper learning curves and difficulty with buy-in for teachers and students alike

#### Contact

Hannah D'Apice, Research Manager hdapice@empiricaleducation.com

# Full EU report available at

#### https://www.empiricaleducation.com/past\_research/

#### Reference this presentation:

D'Apice, H., Schellinger, A., Zacamy, J., Wei, X., & Jaciw, A. P. (2020). Supporting Content-Area Learning in Biology and U.S. History: A Randomized Control Trial of Enhanced Units in California and Virginia. Presentation delivered in a virtual symposium on September 9, 2020 for the annual spring conference of the Society for Research on Educational Effectiveness, Washington, DC. Retrieve from https://www.empiricaleducation.com/past\_research/





EMPOWERING EDUCATORS THROUGH EVIDENCE AND INSIGHT

© 2020 Empirical Education Inc.



EMPOWERING EDUCATORS THROUGH EVIDENCE AND INSIGHT

September 2020

Collaboration and Reflection to Enhance Atlanta Teacher Effectiveness (CREATE) Teacher Residency Program



© 2020 Empirical Education Inc.

#### Presenters

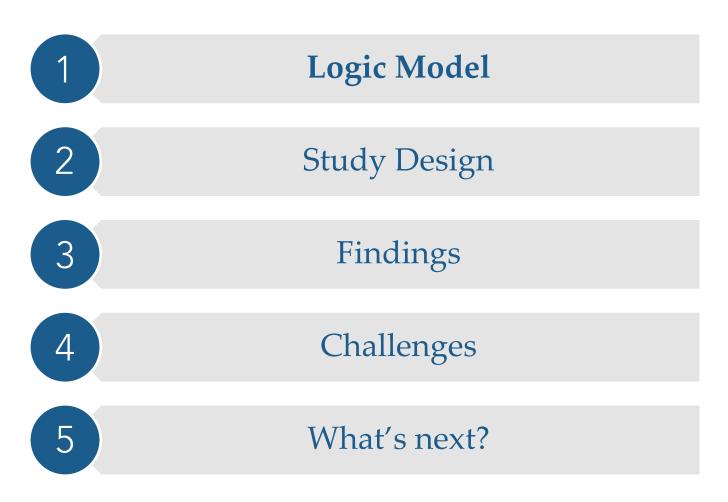


#### Audra Wingard, Research Manager



#### Jenna Zacamy, VP of Research Operations




#### Andrew Jaciw, Principal Investigator

## The Intervention: CREATE



- 3 year teacher residency program
  - *Year 1* = Student teaching year
  - *Year* 2 = First year as a full-time teacher
  - *Year 3* = Second year as a full-time teacher
- aims to develop new teachers into **criticallyconscious**, **compassionate**, and **skilled** with the goal of retaining effective teachers in high-needs schools and ultimately raising student achievement

# Agenda





core

classroom roles

Critical

Friendship (CF)

meetings

Cognitively-

Based

Compassion Training (CBCT®)

Multiple

forms of

mentoring

Summer

Resident

Academy

Y1: Paired teaching practicum in classroom of a cooperating teacher at a CREATE school

Y2: Co-teaching with another Y2 resident as a teacher of record at CREATE school

Y3: Teaching as sole teacher of record at a CREATE school

Residents participate in CF once monthly and work in a school engaged in CF work

Residents participate in meetings with

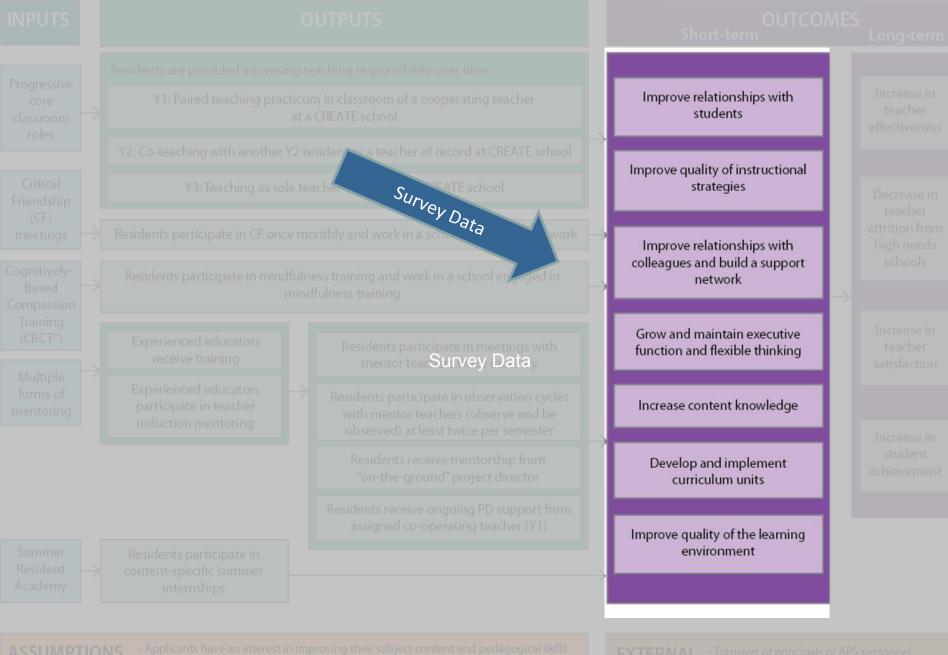
mentor teachers twice monthly

Residents participate in observation cycles

with mentor teachers (observe and be

observed) at least twice per semester

Residents receive mentorship from "on-the-ground" project director

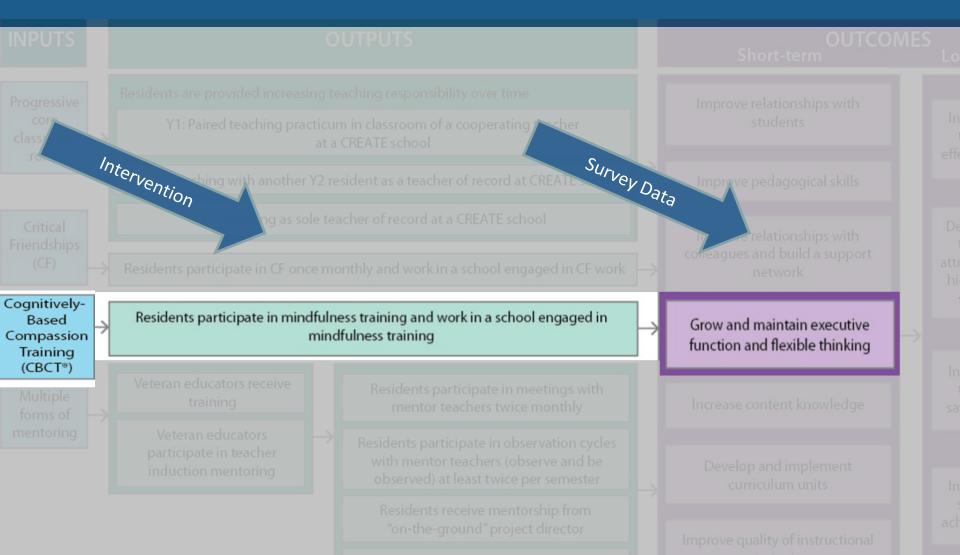

Residents receive ongoing PD support from assigned co-operating teacher (Y1)

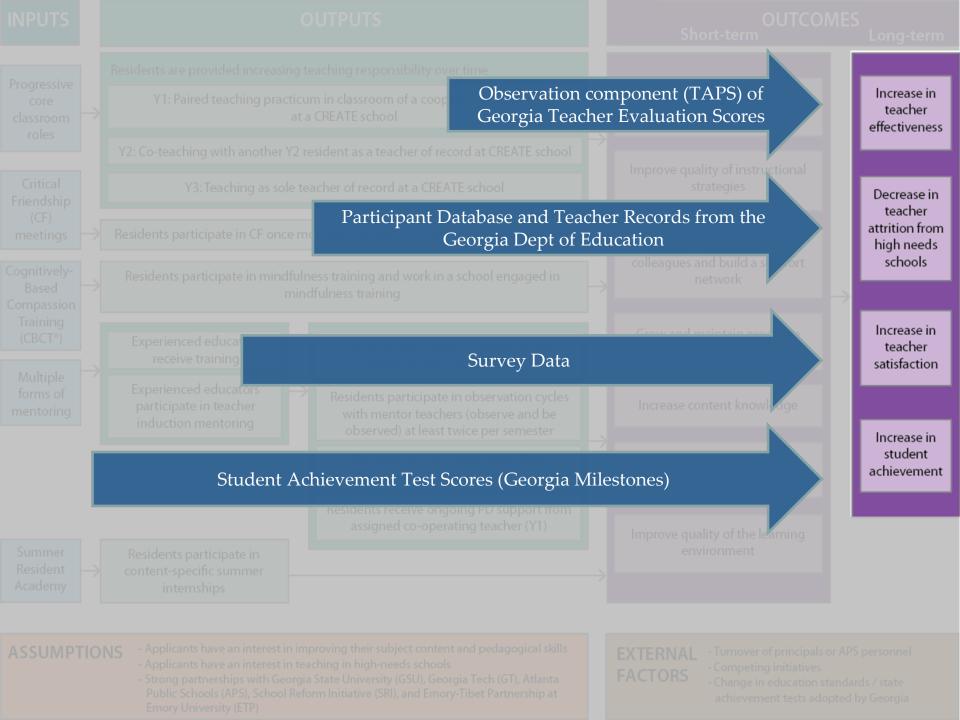
Residents participate in mindfulness training and work in a school engaged in mindfulness training

Experienced educators receive training

Experienced educators participate in teacher induction mentoring

Residents participate in content-specific summer internships



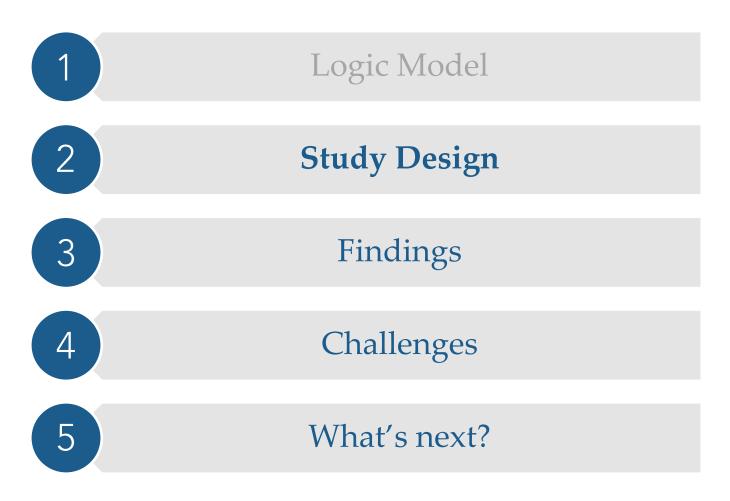


<sup>-</sup> Applicants have an interest in teaching in high-needs school

Strong partnerships with Georgia State University (GSU), Georgia Tech (GT), Atlanta Public Schools (APS), School Reform Initiative (SRI), and Emory-Tibet Partnership at Emory University (ETP) - Competing initiatives
 - Change in education standards / state
 achievement tests adopted by Georgi

### CREATE's Impact on Teachers' Executive Functioning and Flexible Thinking Skills







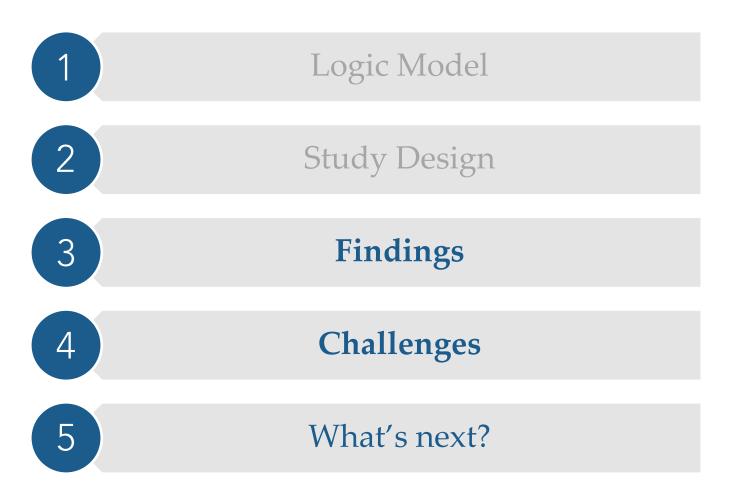

# What is the impact of CREATE on...

Executive function and flexible thinking skills? □ Mindfulness □ Resilience □ Self-Compassion\* □ Burnout\* Teacher retention? **Teacher effectiveness?** Student achievement?

\* Self-compassion and burnout are outcomes we began assessing under the SEED grant

# Agenda








> Quasi-Experiment with a matched comparison group

- > Two groups:
  - Treatment: Participants in CREATE residency program
  - Comparison: Similar pre-service teachers at GSU who will go through traditional credentialing program
- 6 Cohorts

# Agenda



### Review of Findings Executive Functioning and Flexible Thinking Skills



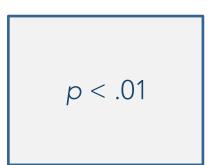
- 1. Mindfulness
- 2. Stress Management & Empathy Related to Teaching
- 3. Commitment to Teaching
- 4. Self-Efficacy in Teaching
- 5. Resilience

No statistically significant findings

## Troubleshooting



• Do impacts vary depending on individual attributes?


• Are measures sensitive to the effects of the intervention?

# Do impacts vary depending on individual attributes?

## Confidence in general teaching skills 1. Mindfulness

### ✓ Confidence in subject matter

- 1. Mindfulness
- 2. Stress Management & Empathy
- 3. Commitment to Teaching



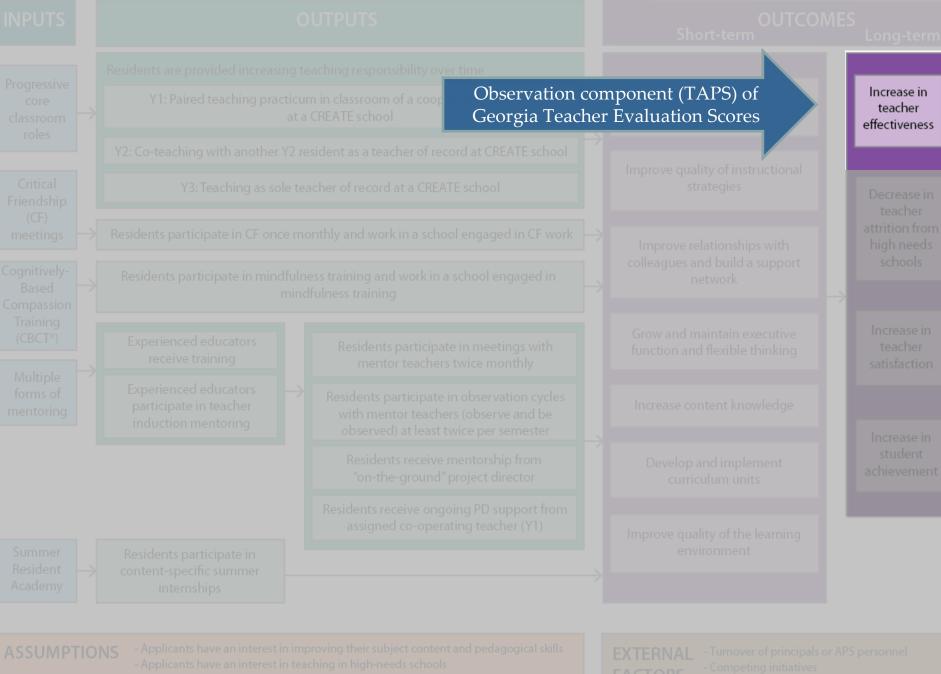


Are measures sensitive to the effects of the intervention?

## Understanding CREATE's Impact

Reduce Stress and Promote Resilience (Five Facets, Stress Management & Empathy, CD-RISC)



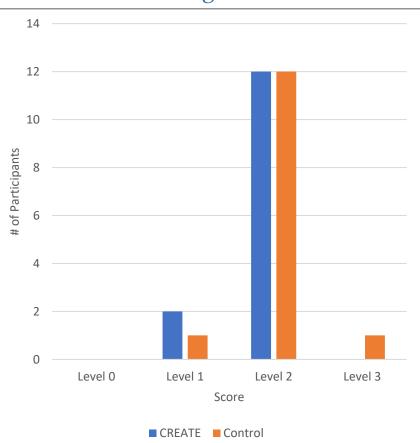

Develop Self Compassion (Self-Compassion Scale)



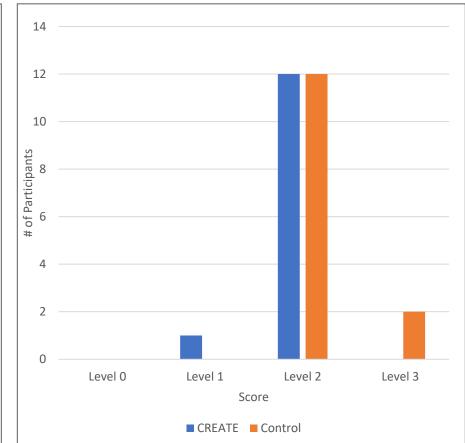
Prevent Burnout (Maslach Teacher Burnout scale)

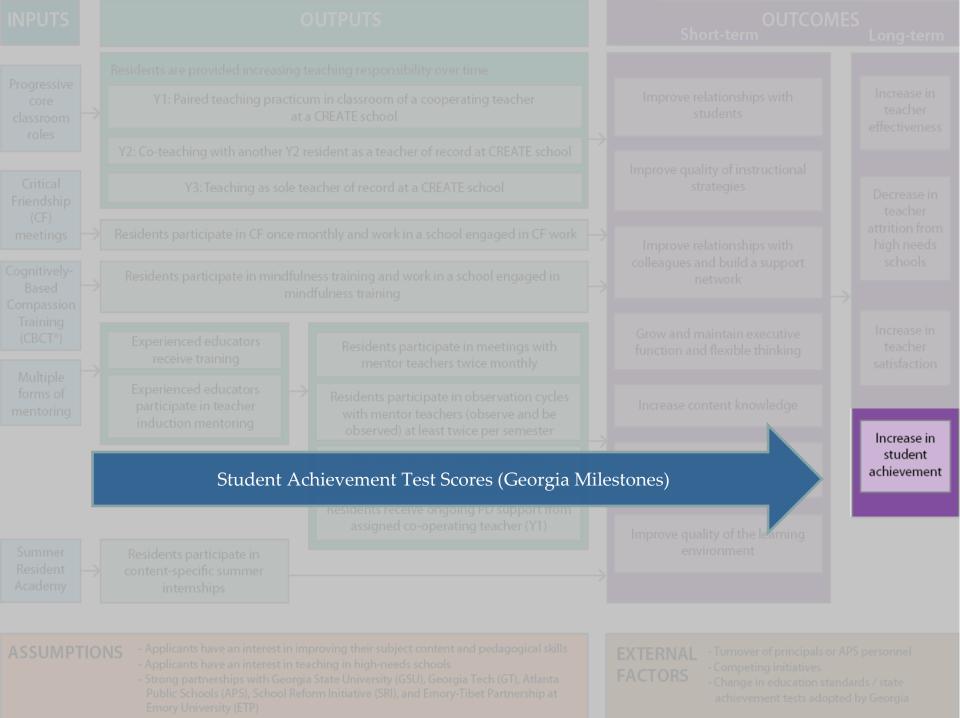


Long term outcomes teacher effectiveness + teacher retention + student achievement




Strong partnerships with Georgia State University (GSU), Georgia Tech (GT), Atlanta Public Schools (APS), School Reform Initiative (SRI), and Emory-Tibet Partnership at Emory University (ETP) - Competing initiatives - Change in education standards / stat


### Findings Teacher Effectiveness




#### **Instructional Strategies**

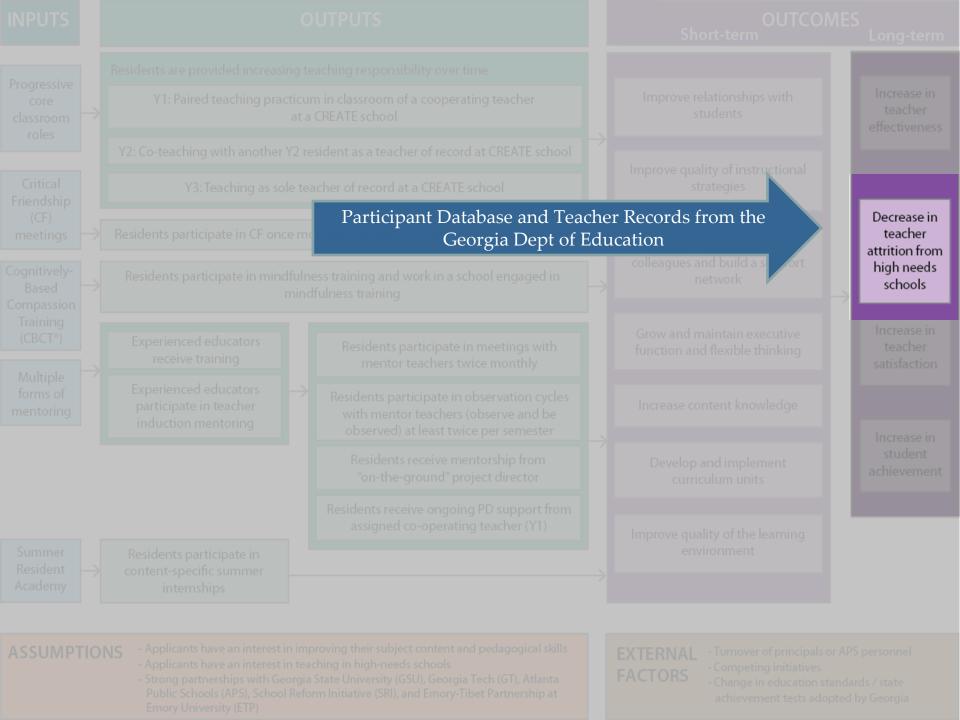


#### **Positive Learning Environment**



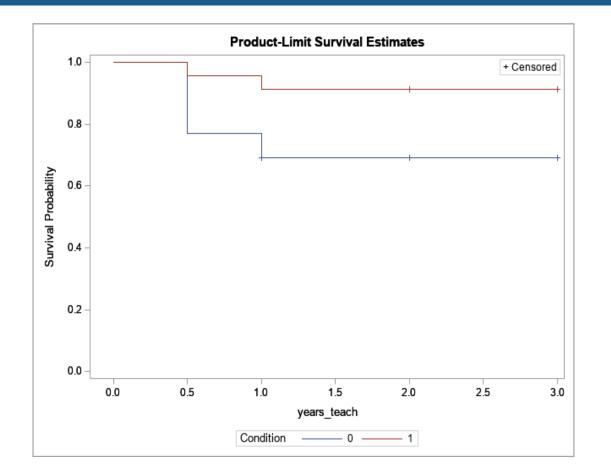


### Findings Student Achievement




What is the impact of CREATE on **mathematics** and **ELA** achievement of students in grades 4-8, as measured by the Georgia Milestones Assessment System?

No statistically significant findings

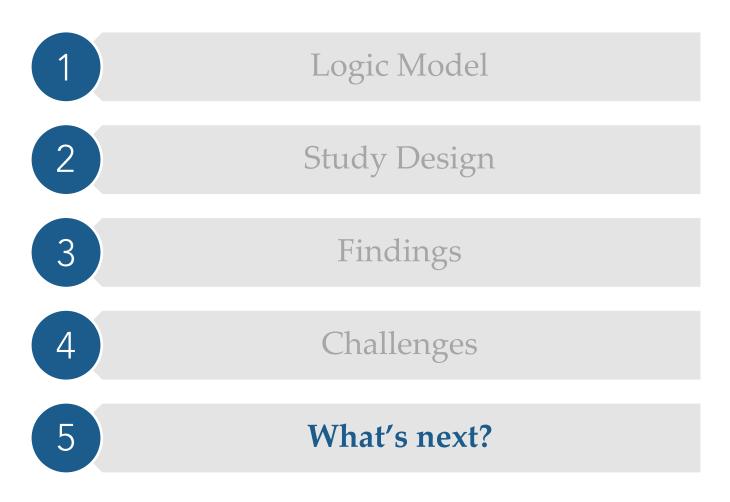

Limited sample:

- ✓ Full-time teacher
- ✓ Tested grade (Grades 3-8)
- ✓ Subject matter (Math and ELA)
- ✓ Consent



### Findings Teacher Retention






Treatment 91% probability of remaining in teaching after Year 3

Control 69% probability of remaining in teaching after Year 3

p = .027

# Agenda







- Increase sample size by adding more cohorts of teachers
- Continue survey analysis for Cohorts 3-5
- Investigate possible mediating mechanisms on teacher retention (as captured through surveys)
- Track teachers for additional years after they leave the CREATE program

## Questions?

#### Reference this presentation:

Wingard, A., Jaciw, A. P., & Zacamy, J. (2020). The Role of Socioemotional Learning in Teacher Induction: A Longitudinal Study of the CREATE Teacher Residency Program.
Presentation delivered in a virtual symposium on
September 9, 2020 for the annual spring conference of the Society for Research on Educational Effectiveness, Washington, DC. Retrieved from https://www.empiricaleducation.com/create/

## Empirical Education

EMPOWERING EDUCATORS THROUGH EVIDENCE AND INSIGHT



Empiricaleducation.com

© 2020 Empirical Education Inc.

Empirical Education EMPOWERING EDUCATORS THROUGH EVIDENCE AND INSIGHT

September 9, 2020

Uncovering the Black Box: Impacts on Mediators of a Science Teacher Professional Development Model



empiricaled

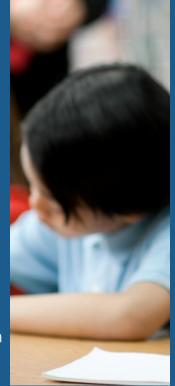


empiricaleducation



empirical-education




empiricaleducation



empiricaleducation

Empiricaleducation.com

© 2020 Empirical Education Inc.







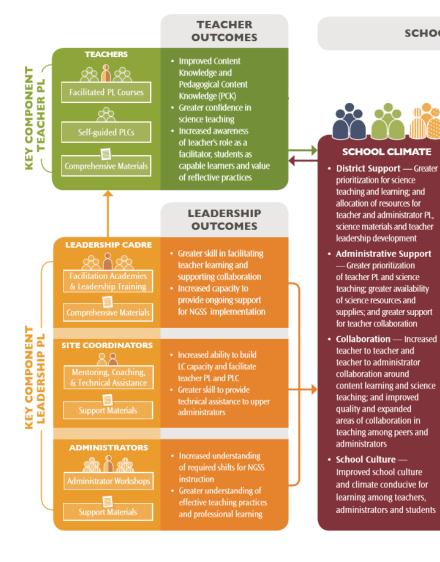
## Agenda

□ Setting the stage

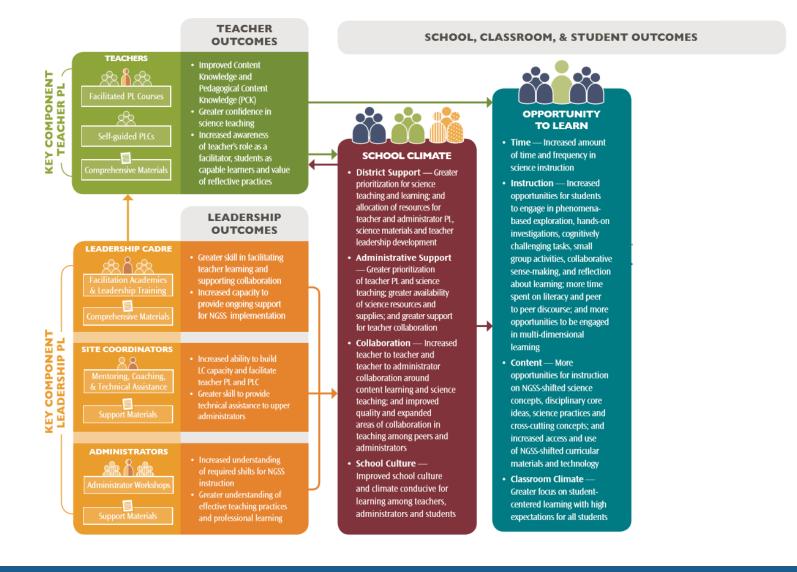
- □ Overview of Making Sense of SCIENCE (MSS)
- □ Overview of the study and this exploratory analysis
- Description of the analysis specific to unpacking the logic model
- □ Findings: Unpacking the logic model
- □ Making sense of the findings

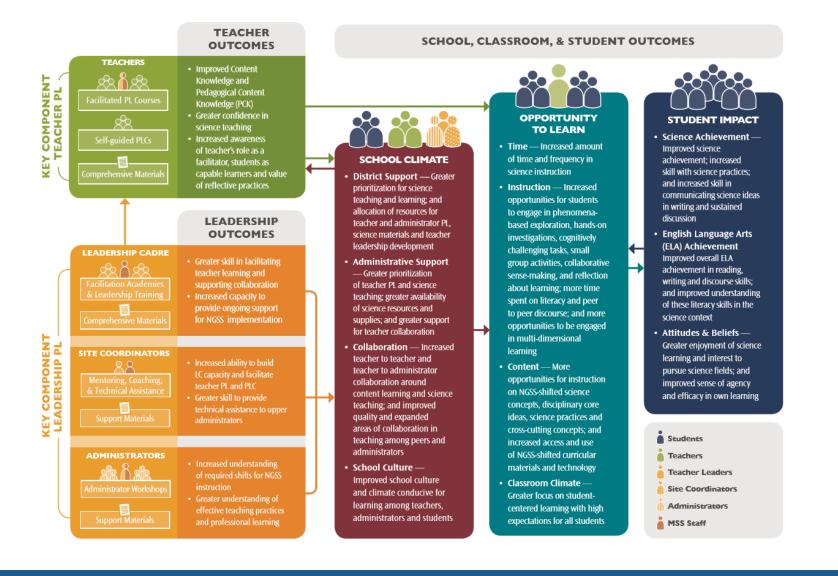
## **Fundamental Shifts in Science Education**

- Release of Next Generation Science Standards (NGSS) in 2013
- Focus on three-dimensional learning
- Guidance calls for systematic changes
  - Curriculum and curriculum resources
  - Teacher professional development
  - Instructional practices
  - Assessment


## **Overview of the Intervention**




Making Sense of SCIENCE


- Science teacher professional learning model
- Developed by WestEd
- Focuses on the critical connections between science understanding, literacy support, and classroom practices, in ways that support the implementation of NGSS and the CCSS
- Capacity building for school administrators and a Leadership Cadre
- Professional learning activities for teachers each year for 2 years
  - 30 hours of professional learning in the summer
  - 12 hours of Professional Learning Communities (PLCs)





#### SCHOOL, CLASSROOM, & STUDENT OUTCOMES





## The Impact Study

i3 Validation grant (2015-2019) to WestEd Cluster (school-level) randomized control trial Elementary schools (4<sup>th</sup> and 5<sup>th</sup> grades)



## **Research Questions**

Confirmatory research questions:

What is the impact of MSS after two years of implementation on:

- **1. Teacher content knowledge** when compared to study participants in control schools receiving the business-as-usual science PD?
- 2. 4th and 5th grade students science achievement in Earth and space science and physical science domains
- **3. 4th and 5th grade students with low incoming achievement** on science achievement in Earth and space science and physical science domains

Exploratory research question discussed today

- What is the impact of MSS on teacher attitudes and beliefs, on opportunity to learn, and on school climate?
- To what extent was MSS implemented with fidelity?

## **Data Collection**

|                | Instrument                                                                                                                                                                                      | Time                                                                                           |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Teachers       | Pretest for Teacher Content Knowledge (TCK)                                                                                                                                                     | As teachers joined the study and prior to participation in any MSS PD                          |
|                | Baseline survey                                                                                                                                                                                 | As teachers joined the study and prior to participation in any MSS PD                          |
|                | Surveys<br>(Beliefs about students, Teaching philosophies, Confidence and self-<br>efficacy, OTLs science topics, School climate, Professional learning,<br>Collaboration, Classroom discourse) | 3 times a year in 2016-17 and 2017-18                                                          |
|                | Posttest<br>for TCK and Pedagogical Content Knowledge (PCK)                                                                                                                                     | Spring 2016-17 and spring 2017-18                                                              |
| Students       | Science achievement assessment that included selected response and constructed response components                                                                                              | Spring 2016-17 and spring 2017-18                                                              |
|                | Survey<br>Attitudes toward science (e.g., aspirations for careers in science, enjoyment<br>of science, self-efficacy around science, and quality of science instruction)                        | Spring 2016-17 and spring 2017-18                                                              |
| Administrators | Baseline survey                                                                                                                                                                                 | As administrators joined the study<br>and prior to the school's<br>participation in any MSS PD |
|                | Surveys                                                                                                                                                                                         | Spring 2016-17 and spring 2017-18                                                              |
| 1              |                                                                                                                                                                                                 |                                                                                                |

From school districts:

• Class rosters, student demographic data, and state assessment data from 2014-15 to 2017-18 for 3rd, 4th, and 5<sup>th</sup> graders

• Third grade Math and ELA assessment data ("pretest scores") for all students with a posttest in spring 2017-18

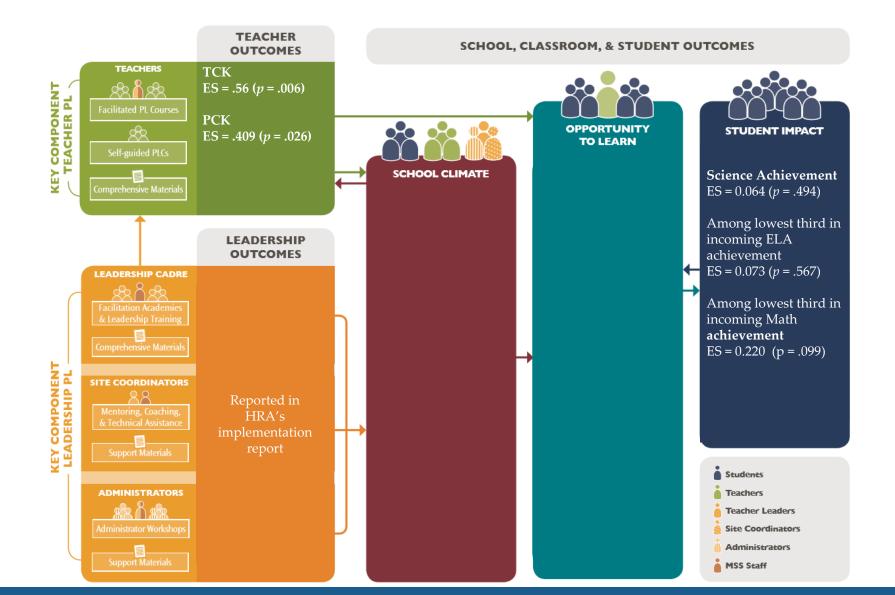
• Science state assessment administered only to 4th graders in WI and 5th graders in CA. No science test scores available for CA for 2016–17 and 2017–18

## Analysis on Impact of Intermediate Outcomes: Methods

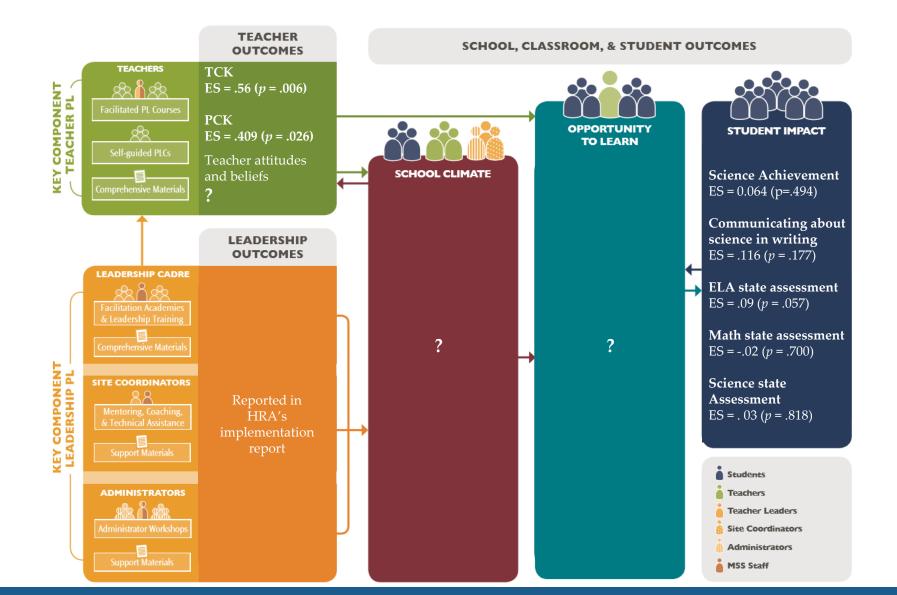
- Based on sample of 147 teachers
- Employs a three-level hierarchical linear model (teacher, schools and matched pairs) that regresses each of the 30 intermediate outcomes on an indicator of assignment status and a series of teacher- and school-level covariates.

#### Teacher covariates for precision

Ethnicity Gender Certification Highest level of education Confidence in teaching science Teaching philosophies


#### School covariates for precision

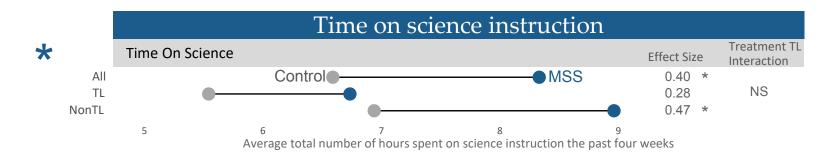
School size Locale Title 1 eligibility


## Unpacking the Logic Model



### Unpacking the Logic Model




### Unpacking the Logic Model



### **Impact on Teacher Attitudes and Beliefs**

|    | _                  | Control MSS                                               |                          |                             |
|----|--------------------|-----------------------------------------------------------|--------------------------|-----------------------------|
|    |                    | Values Being a Reflective Practitioner                    | Effect Size              | Treatment TL<br>Interaction |
|    | All<br>TL<br>NonTL |                                                           | 0.06<br>-0.08<br>0.07    | NS                          |
|    |                    | Philosophically Aligned With NGSS                         |                          |                             |
|    | All<br>TL<br>NonTL |                                                           | 0.24<br>0.52<br>0.08     | NS                          |
|    |                    | Self-efficacy                                             |                          |                             |
|    | All<br>TL<br>NonTL |                                                           | 0.14<br>0.01<br>0.17     | NS                          |
|    |                    | Belief That Students Are Capable Learners                 |                          |                             |
|    | All<br>TL<br>NonTL |                                                           | -0.16<br>0.41<br>-0.41 * | *                           |
|    |                    | Confidence in Supporting Literacy in Science              |                          |                             |
|    | All<br>TL<br>NonTL |                                                           | 0.23<br>0.20<br>0.21     | NS                          |
| *  |                    | Agency in the Classroom                                   |                          |                             |
| •• | All<br>TL<br>NonTL |                                                           | 0.38 *<br>0.43<br>0.42 * | NS                          |
| +  |                    | Confidence in Science Instructional Practices             |                          |                             |
| -  | All<br>TL<br>NonTL |                                                           | 0.26 -<br>0.49 -<br>0.16 | ⊢<br>⊦ NS                   |
|    |                    | Confidence in Addressing Student Performance Expectations |                          |                             |
|    | All<br>TL<br>NonTL |                                                           | 0.25<br>0.66 *<br>0.06   | +                           |
|    |                    | 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5<br>Average rating       | 5.0                      |                             |

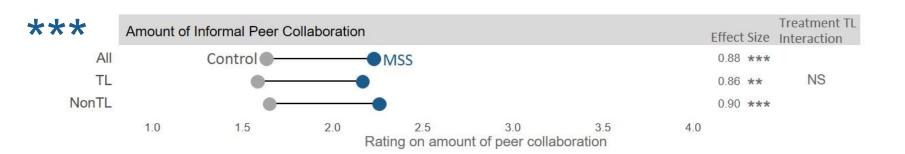
### Impact on Opportunity to Learn – Time & Instruction



|    |                    | Instruction |             |            |            |         |                   |             |     |     |                       |      |                             |
|----|--------------------|-------------|-------------|------------|------------|---------|-------------------|-------------|-----|-----|-----------------------|------|-----------------------------|
| +  |                    | Explai      | ning Ideas  | s and Phe  | nomena     |         |                   |             |     |     | Effect                | Size | Treatment TL<br>Interaction |
|    | All<br>TL<br>NonTL |             |             |            | Со         | ontrol  | MS                | SS          |     |     | 0.32<br>-0.06<br>0.44 | +    | NS                          |
| *  |                    | Senser      | naking of   | Hands-o    | n Investig | gations |                   |             |     |     | 0.44                  |      |                             |
|    | All<br>TL<br>NonTL |             |             |            |            | •       | •                 |             |     |     | 0.40<br>0.13<br>0.48  | *    | NS                          |
| ** |                    | Partici     | pating in ( | Collabora  | tive Disco | ourse   |                   |             |     |     |                       |      |                             |
|    | All<br>TL<br>NonTL |             |             |            | (          | -       |                   |             |     |     | 0.46<br>0.29<br>0.51  | **   | NS                          |
| ** |                    | Integra     | tion of Sc  | ience Lite | eracy      |         |                   |             |     |     |                       |      |                             |
|    | All<br>TL<br>NonTL |             |             |            | •          | •-•     | •                 |             |     |     | 0.49<br>0.23<br>0.57  | **   | NS                          |
|    |                    | 1.0         | 1.5         | 2.0        | 2.5        | 3.0     | 3.5<br>Average ra | 4.0<br>ting | 4.5 | 5.0 |                       |      |                             |

### Impact on Opportunity to Learn – Content (ESS and PS)

|                    | DCI: Earth and Human Activity (ES)                       | Effect Size                    | Treatment TL<br>Interaction |
|--------------------|----------------------------------------------------------|--------------------------------|-----------------------------|
| All<br>TL<br>NonTL | Control                                                  | -0.07<br>0.17<br>-0.17         | NS                          |
|                    | DCI: Earths Systems (ES)                                 |                                |                             |
| All<br>TL<br>NonTL |                                                          | 0.14<br>0.15<br>0.12           | NS                          |
|                    | DCI: Earths Place in the Universe (ES)                   |                                |                             |
| All<br>TL<br>NonTL |                                                          | -0.13<br>-0.37<br>-0.06        | NS                          |
|                    | DCI: Matter and Its Interactions (PS)                    |                                |                             |
| All<br>TL<br>NonTL |                                                          | 0.18<br>-0.33<br>0.38 <b>+</b> | *                           |
|                    | DCI: Conservation of Energy and Energy Transfer (PS)     |                                |                             |
| All<br>TL<br>NonTL |                                                          | 0.28<br>0.90 <b>**</b><br>0.03 | *                           |
|                    | DCI: Definitions of Energy (PS)                          |                                |                             |
| All<br>TL<br>NonTL |                                                          | 0.12<br>0.79 *<br>-0.14        | *                           |
|                    | DCI: Motion and Stability - Forces and Interactions (PS) |                                |                             |
| All<br>TL<br>NonTL |                                                          | 0.21<br>0.30<br>0.19           | NS                          |
|                    | DCI: Waves (PS)                                          |                                |                             |
| All<br>TL<br>NonTL |                                                          | 0.16<br>0.58 <b>+</b><br>-0.01 | NS                          |
|                    | 1.5 2.0 2.5 3.0<br>Average rating                        |                                |                             |


### Impact on Opportunity to Learn – Content: SEPs and CCCs



### Impact on intermediate outcomes: Findings for School Climate

| * |                    | Support                                                           | ing Teache   | er collabo           | ration      |            |                      |         |              | Effect Siz            |          | eatment TL<br>teraction |
|---|--------------------|-------------------------------------------------------------------|--------------|----------------------|-------------|------------|----------------------|---------|--------------|-----------------------|----------|-------------------------|
|   | All<br>TL<br>NonTL |                                                                   |              |                      |             |            | Cont                 | rol     | -• MSS<br>-• | 0.39<br>0.55<br>0.32  | *<br>+   | NS                      |
|   |                    | Culture                                                           | of Peer Co   | llaboratic           | on          |            |                      |         |              |                       |          |                         |
|   | All<br>TL<br>NonTL |                                                                   |              |                      |             |            |                      |         |              | 0.22<br>0.25<br>0.21  |          | NS                      |
| + |                    | Admir                                                             | nistrator Su | upport Inv           | volving Tea | chers in S | Science Lead         | lership |              |                       |          |                         |
|   | All<br>TL<br>NonTL |                                                                   |              |                      |             |            | •                    | •       | •            | 0.30<br>1.14<br>0.00  | +<br>*** | **                      |
|   |                    | Prioritizing Support for Teacher Professional Learning in Science |              |                      |             |            |                      |         |              |                       |          |                         |
|   | All<br>TL<br>NonTL |                                                                   |              |                      |             |            |                      |         |              |                       | +        | +                       |
|   |                    | Trust a                                                           | and Respec   | ct Betwee            | n Teachers  | and Adn    | ninistrators         |         |              |                       |          |                         |
|   | All<br>TL<br>NonTL |                                                                   |              |                      |             |            |                      |         |              | 0.10<br>0.33<br>0.04  |          | NS                      |
|   |                    | Trust a                                                           | nd Respect   | t Among <sup>-</sup> | Teachers    |            |                      |         |              |                       |          |                         |
|   | All<br>TL<br>NonTL |                                                                   |              |                      |             |            |                      |         |              | 0.04<br>-0.11<br>0.12 |          | NS                      |
|   |                    | 1.0                                                               | 1.5          | 2.0                  | 2.5         | 3.0<br>Av  | 3.5<br>rerage rating | 4.0     | 4.5          | 5.0                   |          |                         |

### Impact on Intermediate Outcomes: Findings on Amount of Teacher Collaboration



# Proximal outcomes

Direct effects of summer PD and PLCs

### **Positive Results**

Teacher outcomes

- Teacher content knowledge
- Pedagogical content knowledge based on holistic ratings
- Greater sense of Agency In the Classroom
- Greater *Confidence In Science Instructional Practices* (marginally significant)

### Opportunity to learn

- More time on science instruction
- Greater emphasis on NGSS-aligned instructional practices

### School climate

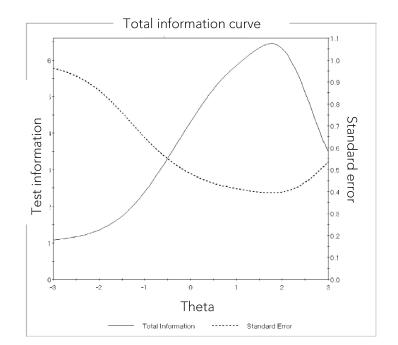
- More collaboration beyond MSS PLCs
- Greater support of administrators for teacher collaboration
- More involvement by administrators of teachers in science leadership (marginally significant)

Distal outcomes

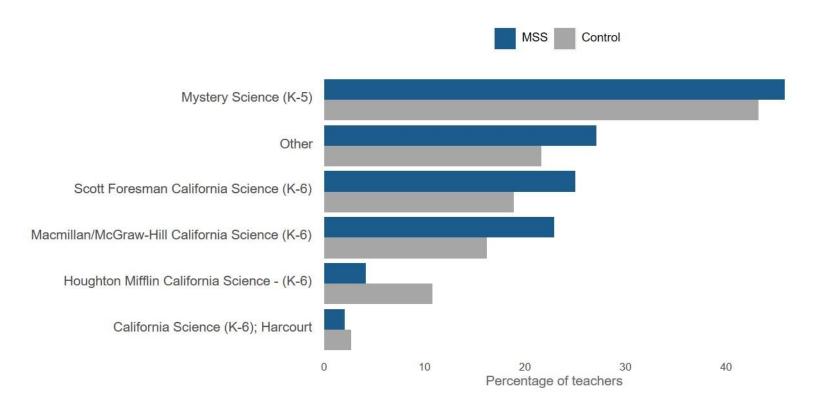
### Null Results

Teacher's attitudes and beliefs

- Self-efficacy
- Values being a reflective practitioner
- Belief that students are capable learners

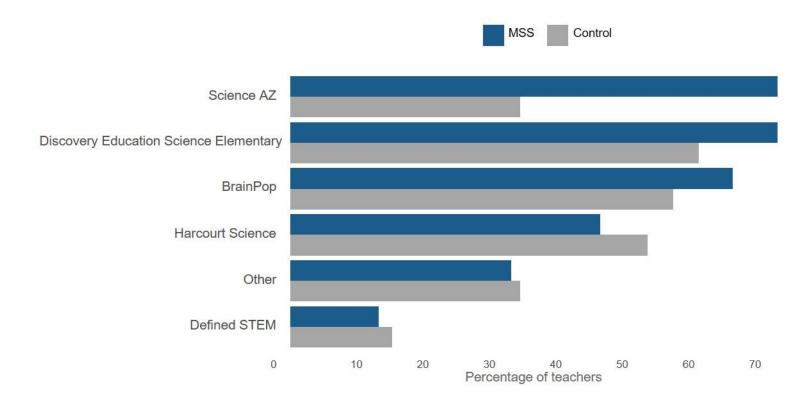

School culture

- Trust and respect among teachers
- Trust and respect between teachers and administrators
- Prioritizing support for teacher PL in science


Student science achievement and communicating about science in writing

The assessment was difficult, and there was low test information (low score reliability) for students with low incoming achievement.

| Decile | Ν   | Mean | Std Dev | Minimum | Maximum |
|--------|-----|------|---------|---------|---------|
| 1      | 214 | 0.30 | 0.12    | 0.00    | 0.80    |
| 2      | 214 | 0.32 | 0.11    | 0.04    | 0.64    |
| 3      | 214 | 0.32 | 0.12    | 0.04    | 0.72    |
| 4      | 214 | 0.35 | 0.12    | 0.04    | 0.76    |
| 5      | 214 | 0.40 | 0.13    | 0.08    | 0.80    |
| 6      | 214 | 0.41 | 0.13    | 0.16    | 0.84    |
| 7      | 214 | 0.44 | 0.14    | 0.13    | 0.84    |
| 8      | 214 | 0.46 | 0.13    | 0.16    | 0.84    |
| 9      | 214 | 0.51 | 0.15    | 0.17    | 0.88    |
| 10     | 214 | 0.57 | 0.14    | 0.24    | 0.88    |
|        |     |      |         |         |         |




Coherent curriculum and corresponding curriculum resources were not yet available in participating states/districts.



### Curriculum resources used in CA (as reported by teachers)

Making Sense of SCIENCE should be accompanied by a *coherent* curriculum and corresponding curricular resources



### Curriculum resources used in WI (as reported by teachers)

# The instability of the sample over two years compromised fidelity of implementation

| Percentage of teachers who met the fidelity threshold |              |              |                                      |  |  |  |  |  |  |
|-------------------------------------------------------|--------------|--------------|--------------------------------------|--|--|--|--|--|--|
|                                                       | 2016-17      | 2017-18      | Across the two years                 |  |  |  |  |  |  |
| Attendance at                                         |              |              | 54% (100 of 185)                     |  |  |  |  |  |  |
| summer courses                                        | 94%          | 88%          | of all study teachers                |  |  |  |  |  |  |
|                                                       | (118 of 125) | (100 of 114) | 61% (83 of 136) of baseline teachers |  |  |  |  |  |  |
| Attendance at                                         |              |              | 56% (103 of 185)                     |  |  |  |  |  |  |
| PLCs                                                  | 97%          | 90%          | of all study teachers                |  |  |  |  |  |  |
|                                                       | (121 of 125) | (103 of 114) | 58% (79 of 136)                      |  |  |  |  |  |  |
|                                                       |              |              | of baseline teachers                 |  |  |  |  |  |  |

# Thank you

### Reference this presentation:

Jaciw, A. P., Nguyen, T., & Zacamy, J. (2020). Uncovering the Black Box: Exploratory Mediation Analysis for a Science Teacher Professional Development Program. Presentation delivered in a virtual symposium on September 9, 2020 for the annual spring conference of the Society for Research on Educational Effectiveness, Washington, DC. Retrieved from <u>https://www.empiricaleducation.com/mss/</u>

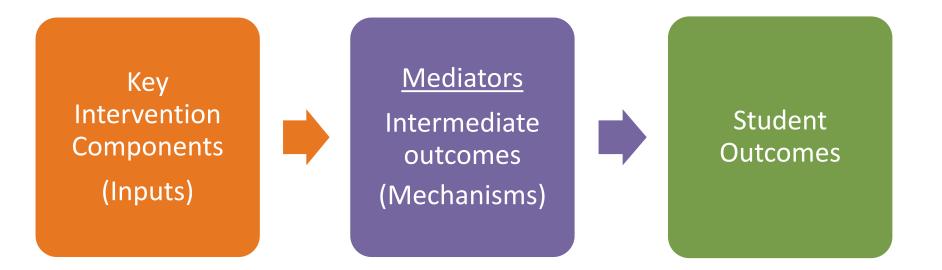


EMPOWERING EDUCATORS THROUGH EVIDENCE AND INSIGHT



### **Unpacking the Logic Model**

Context and Pathways to Intended Outcomes


Anne Wolf | Abt Associates September 9, 2020 Society for Research on Educational Effectiveness



# Logic Model as a Tool for Evaluation Design

- Identifies the student outcomes that should be measured
  - To examine if the intervention works
- To unpack the logic model further
  - Need a clear understanding of the antecedents, components, and mechanisms of the model
    - To explore <u>how</u> the intervention works
    - *For whom* and *under what conditions*

### Mediators and Moderators in the Logic Model



### Moderators:

Antecedents: Pre-existing characteristics of teachers and/or students Conditions: Differences in intervention features

### Mediators: How the Intervention Works

### School Climate

- Administrative support
- School culture
  - Teacher collaboration
  - Peer collaboration

### Effect on Teachers

- Content knowledge
- Confidence
- Self-efficacy
- Socioemotional skills
  - Mindfulness,
  - Commitment,
- Stress
   management
- Teacher retention

#### Effects on Classroom Learning Environment

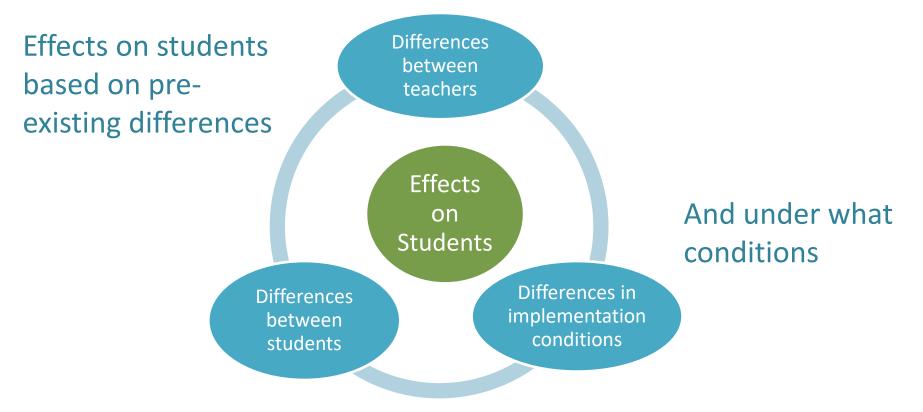
- Instructional practice
- Curricular content
- Classroom climate

#### Intermediate Effects on Students

- Discipline
- Student engagement
- Social emotional learning

# **Examining Effects on Mediators**

- Understanding if there is support for the proposed theory of change
- Examining the pathways toward achieving the targeted student outcomes


# **Challenges of Measuring Mediators**

- 1. Cost
  - Intermediate outcomes are generally more expensive to measure than student achievement
    - Typically: Surveys and observations
- 2. Despite benefits to field & theory-building
  - Many intermediate outcomes are not reviewed by the WWC

# Challenges of Measuring Mediators (2)

- 3. Evidence that changes in mediators affect students
  - Showing changes in mediators is not the full pathway
    - CACE, principal score weighting, instrumental variables analysis
- 4. Absence of substantial changes in mediators
  - Could be a failure of the theorized pathway
  - Failure of sufficient dosage of inputs
  - Measurement problem

### Moderators: For whom & under what conditions it works



# **Exploring Differences in Impacts**

- Examining intervention conditions that support effectiveness
- Investigating for whom the intervention works
  - Guided by hypotheses about why impacts might differ

### Challenges

- Many statistical tests, increases Type I error
- Limited power
  - Impact evaluations usually designed for main effects
  - Example of MDEs for subgroups

| Main effect for students (full sample)                |     |  |  |  |  |
|-------------------------------------------------------|-----|--|--|--|--|
| Students not low-achieving at baseline (larger group) | .26 |  |  |  |  |
| Students low-achieving at baseline (smaller group)    | .31 |  |  |  |  |
| Minimum detectable difference (MDD) between subgroups | .40 |  |  |  |  |



- Analysis of mediators and antecedents inform
  - Refinement of the logic model
  - Modification of implementation
    - to impact intermediate outcomes
    - to work better for groups with no effect

### **Unpacking the Logic Model:** Context and Pathways to Intended Outcomes

Anne Wolf, Abt Associates anne\_wolf@abtassoc.com



BOLD THINKERS DRIVING REAL-WORLD IMPACT

### abtassociates.com

