Trends in racial achievement gaps in the NCLB era

Sean F. Reardon
Erica Greenberg
Demetra Kalogrides
Kenneth A. Shores
Rachel A. Valentino
Stanford University

SREE, 2012

(supported by IES grant R305D110018,
Andrew Ho, co-Investigator)
Issues

• How have black-white and Hispanic-white achievement gaps changed in the NCLB era?
 ○ We know gaps narrowed substantially in the 1970s and 1980s, but what are more recent trends?

• How do these trends and patterns vary across states?
 ○ And why do they vary across states (not the topic of this paper, but for future work)?

• Has NCLB accountability policy led to a narrowing of achievement gaps?
 ○ Some evidence that NCLB led to some increase in average achievement, especially in math (see Dee & Jacob 2009; Wong, Cook, & Steiner, nd)
 ○ Less evidence (but some, see Gaddis & Lauen, 2011; Lauen & Gaddis, forthcoming) of effects of NCLB on achievement gaps.
Data

State NAEP

- 4th and 8th grade
- Math and Reading
- \(n \approx 1,500 - 2,000 \) per state/year/grade/subject
- Same test across states and over time

State Accountability Test Data

- 2nd-8th grades
- Math and ELA/Reading
- Late 1990s/early 2000s-2010 (K cohorts from \(~1990-2006\))
- Full state population (large \(n \)'s)
- Tests vary across states and time
Data Structure

Number of Years Exposed to NCLB, by K Cohort and Grade

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Number of Available State-x-Subject Black-White Achievement Gap Estimates, NAEP Math and Reading Test Data, by K Cohort and Grade

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 2</td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td></td>
</tr>
<tr>
<td>Grade 4</td>
<td>38</td>
<td>42</td>
<td>42</td>
<td>47</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 5</td>
<td></td>
</tr>
<tr>
<td>Grade 6</td>
<td></td>
</tr>
<tr>
<td>Grade 7</td>
<td></td>
</tr>
<tr>
<td>Grade 8</td>
<td>41</td>
<td>48</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

Note: Shading Indicates Years Exposed to NCLB
Number of Available State-x-Subject Black-White Achievement Gap Estimates, NAEP Math and Reading Test Data, by K Cohort and Grade

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>42</td>
<td>42</td>
<td>47</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>20</td>
<td>28</td>
<td>33</td>
<td>43</td>
<td>58</td>
<td>65</td>
<td>91</td>
<td>95</td>
<td>99</td>
<td>98</td>
<td>89</td>
<td>95</td>
<td>99</td>
<td>91</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
<td>16</td>
<td>26</td>
<td>31</td>
<td>44</td>
<td>62</td>
<td>94</td>
<td>97</td>
<td>100</td>
<td>99</td>
<td>91</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>91</td>
<td>97</td>
<td>101</td>
<td>100</td>
<td>89</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>16</td>
<td>17</td>
<td>33</td>
<td>93</td>
<td>97</td>
<td>101</td>
<td>97</td>
<td>86</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>19</td>
<td>24</td>
<td>36</td>
<td>47</td>
<td>61</td>
<td>74</td>
<td>89</td>
<td>96</td>
<td>101</td>
<td>99</td>
<td>88</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Shading Indicates Years Exposed to NCLB
Measuring Gaps

We use the gap measure V (Ho & Reardon, 2012), which is similar to Cohen’s d, but with some advantages:

- When the test score distributions of the 2 groups are both normal, $V = d$
- If the test metric is transformed monotonically, so that the 2 distributions are respectively normal, V is unchanged (but d is sensitive to the test metric)
- If the distributions are respectively normal (or even approximately so), V can be computed from group-specific proficiency counts (as are typically available post-NCLB), while d cannot.
- Even if the distributions are not respectively normal, \hat{V} contains very little bias across a wide range of conditions.
Example of Alternative Gap Estimation Methods

White-Black Achievement Gap in NAEP Across Cohort, Math and Reading Pooled

Year of Kindergarten Enry

Cohen's D (W/in State Pooled SD) V- Full Data V- Censored Data
Descriptive Models

- Pool the data from a given source (NAEP or state data)
- Model the gap in cohort c in grade g in state s in subject t as a function of
 - a state-specific intercept $(\Gamma + \gamma_s)$,
 - a state-specific linear cohort trend $(\Delta + \delta_s)$,
 - a state-specific linear grade trend $(\Lambda + \lambda_s)$,
 - a subject difference,
- Fit as random-coefficient models, estimating the variance-covariance matrix of $\gamma_s, \delta_s, \lambda_s$
- Weight by the precision of the gap estimate $(1/\sigma_{cgst}^2)$
- δ_s is the key parameter of interest

$$V_{cgst} = (\Gamma + \gamma_s) + (\Delta + \delta_s)C_c + (\Lambda + \lambda_s)G_g + \beta M_t + e_{scgst}$$
White-Black Achievement Gap Across Cohort, Math and Reading Pooled (HLM Models)
White-Hispanic Achievement Gap Across Cohort, Math and Reading Pooled (HLM Models)

Year of Kindergarten Entry

State Test Data

State NAEP
White-Hispanic Achievement Gap Across Grade, Math and Reading Pooled (HLM Models)
<table>
<thead>
<tr>
<th></th>
<th>Black-White Gap</th>
<th></th>
<th>Hispanic-White Gap</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAEP Data</td>
<td>State Data</td>
<td>NAEP Data</td>
<td>State Data</td>
</tr>
<tr>
<td>Math (vs. Reading)</td>
<td>0.177 ***</td>
<td>0.057 ***</td>
<td>0.090 ***</td>
<td>-0.093 ***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.011)</td>
<td>(0.007)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Kindergarten Cohort</td>
<td>-0.008 ***</td>
<td>-0.008 **</td>
<td>-0.006 ***</td>
<td>-0.009 ***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Grade</td>
<td>-0.008 ***</td>
<td>0.003</td>
<td>-0.006 **</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.003)</td>
<td>(0.009)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.846 ***</td>
<td>0.716 ***</td>
<td>0.684 ***</td>
<td>0.606 ***</td>
</tr>
<tr>
<td>(1999 Grade 3)</td>
<td>(0.030)</td>
<td>(0.024)</td>
<td>(0.029)</td>
<td>(0.029)</td>
</tr>
</tbody>
</table>

Random Effects Parameters

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SD of Constant</td>
<td>0.211 ***</td>
<td>0.171 ***</td>
<td>0.202 ***</td>
<td>0.208 ***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD of Cohort</td>
<td>0.010 ***</td>
<td>0.016 ***</td>
<td>0.009 ***</td>
<td>0.017 ***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD of Grade</td>
<td>0.012 ***</td>
<td>0.020 ***</td>
<td>0.012 ***</td>
<td>0.022 ***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of States</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total Observations</td>
<td>1052</td>
<td>3897</td>
<td>1052</td>
<td>3898</td>
</tr>
</tbody>
</table>
Math and Reading Pooled

<table>
<thead>
<tr>
<th></th>
<th>Black-White Gap</th>
<th></th>
<th>Hispanic-White Gap</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAEP Data</td>
<td>State Data</td>
<td>NAEP Data</td>
<td>State Data</td>
</tr>
<tr>
<td>Math (vs. Reading)</td>
<td>0.177 ***</td>
<td>0.057 ***</td>
<td>0.090 ***</td>
<td>-0.093 ***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.011)</td>
<td>(0.007)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Kindergarten Cohort</td>
<td>-0.008 ***</td>
<td>-0.008 **</td>
<td>-0.006 ***</td>
<td>-0.009 ***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Grade</td>
<td>-0.008 ***</td>
<td>0.003</td>
<td>-0.006 **</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.003)</td>
<td>(0.009)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.846 ***</td>
<td>0.716 ***</td>
<td>0.684 ***</td>
<td>0.606 ***</td>
</tr>
<tr>
<td>(1999 Grade 3)</td>
<td>(0.030)</td>
<td>(0.024)</td>
<td>(0.029)</td>
<td>(0.029)</td>
</tr>
</tbody>
</table>

Random Effects Parameters

<table>
<thead>
<tr>
<th></th>
<th>NAEP Data</th>
<th>State Data</th>
<th>NAEP Data</th>
<th>State Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD of Constant</td>
<td>0.211 ***</td>
<td>0.171 ***</td>
<td>0.202 ***</td>
<td>0.208 ***</td>
</tr>
<tr>
<td>SD of Cohort</td>
<td>0.010 ***</td>
<td>0.016 ***</td>
<td>0.009 ***</td>
<td>0.017 ***</td>
</tr>
<tr>
<td>SD of Grade</td>
<td>0.012 ***</td>
<td>0.020 ***</td>
<td>0.012 ***</td>
<td>0.022 ***</td>
</tr>
<tr>
<td>Number of States</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total Observations</td>
<td>1052</td>
<td>3897</td>
<td>1052</td>
<td>3898</td>
</tr>
</tbody>
</table>
Relationship Between State Cohort Slopes and Intercepts
White-Black Gaps, Math and Reading Combined

State Data

NAEP Data
Has NCLB led to reductions in achievement gaps?

First approach:

- Does gap narrow within a cohort, net of grade trends common to all cohorts, the more years the cohort was exposed to NCLB?
- or, equivalently, do gaps in a given grade narrow across cohorts, net of cohort trends common to all grades, the more years a cohort has been exposed to NCLB by that grade?

\[V_{cgst} = (\Gamma + \gamma_s) + (\Delta + \delta_s)C_c + (\Lambda + \lambda_s)G_g + \beta M_t + \alpha (YRSNCLB_{cg}) + e_{scgt} \]
Has NCLB led to reductions in achievement gaps?

Second approach:

- Do cohort trend in gaps begin to narrow faster after 2002 in states where we expect NCLB would have had the largest effects?

- We expect faster gap narrowing in states with
 - No consequential accountability policy prior to NCLB (as in Dee & Jacob, 2009)
 - No subgroup accountability policy prior to NCLB
 - More minority students in schools meeting minimum subgroup size threshold
 - Lower/higher (?) proficiency thresholds (direction of expected effect is unclear here)
Has NCLB led to reductions in achievement gaps?

Second approach:

- Do cohort trend in gaps begin to narrow faster after 2002 in states where we expect NCLB would have had the largest effects?
- We expect faster gap narrowing in states with
 - No consequential accountability policy prior to NCLB (as in Dee & Jacob, 2009)
 - No subgroup accountability policy prior to NCLB
 - More minority students in schools meeting minimum subgroup size threshold
 - Lower/higher (?) proficiency thresholds (direction of expected effect is unclear here)
NCLB Effect Models

Model 1 (exposure model with state “treatment” interaction):

\[V_{cgst} = (\Gamma + \gamma_s) + (\Delta + \delta_s)C_c + (\Lambda + \lambda_s)G_g + \beta M_t \]
\[+ \alpha(YRSNCLB_{cg}) + \eta(YRSNCLB_{cg} \cdot TX_s) + e_{scgt} \]

Model 2 (comparative interrupted time-series model, as in Dee & Jacob, 2009):

\[V_{cgst} = f_s(TIME_{cg}, G_g, M_t) + \beta(TIME_{cg} \cdot TX_s) \]
\[+ \eta(TIME_{cg} \cdot POSTTIME_{cg} \cdot TX_s) + e_{cgst} \]
Black-White Gap

<table>
<thead>
<tr>
<th></th>
<th>Math and Reading</th>
<th>Math Only</th>
<th>Reading Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAEP Data</td>
<td>State Data</td>
<td>NAEP Data</td>
</tr>
<tr>
<td>Math (vs.Reading)</td>
<td>0.178 *** 0.057 ***</td>
<td>(0.008) (0.010)</td>
<td></td>
</tr>
<tr>
<td>Kindergarten Cohort</td>
<td>-0.004 -0.002</td>
<td>0.002 -0.004 -0.015 ** -0.001</td>
<td>(0.003) (0.003) (0.003) (0.005) (0.003)</td>
</tr>
<tr>
<td>Grade</td>
<td>-0.011 0.013 ** 0.015 0.015 ** -0.061 * 0.010 +</td>
<td>(0.014) (0.004) (0.017) (0.004) (0.026) (0.006)</td>
<td></td>
</tr>
<tr>
<td>Years Exposed to NCLB</td>
<td>-0.007 -0.010 *** -0.019 *** -0.011 *** 0.011 + -0.007 +</td>
<td>(0.004) (0.003) (0.005) (0.002) (0.006) (0.004)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.865 *** 0.742 *** 1.003 *** 0.793 *** 0.717 *** 0.692 ***</td>
<td>(0.032) (0.024) (0.035) (0.024) (0.033) (0.027)</td>
<td></td>
</tr>
</tbody>
</table>

Random Effects Parameters

<table>
<thead>
<tr>
<th></th>
<th>NAEP Data</th>
<th>State Data</th>
<th>NAEP Data</th>
<th>State Data</th>
<th>NAEP Data</th>
<th>State Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD of Constant</td>
<td>0.212 *** 0.171 *** 0.214 *** 0.167 *** 0.215 *** 0.177 ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD of Cohort</td>
<td>0.010 *** 0.016 *** 0.009 *** 0.016 *** 0.012 *** 0.017 ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD of Grade</td>
<td>0.050 *** 0.020 *** 0.042 *** 0.022 *** 0.074 *** 0.022 ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of States</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Number of Observation</td>
<td>1254</td>
<td>3897</td>
<td>656</td>
<td>1949</td>
<td>598</td>
<td>1948</td>
</tr>
<tr>
<td></td>
<td>Math and Reading</td>
<td>Math Only</td>
<td>Reading Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAEP Data</td>
<td>State Data</td>
<td>NAEP Data</td>
<td>State Data</td>
<td>NAEP Data</td>
<td>State Data</td>
</tr>
<tr>
<td>Math (vs.Reading)</td>
<td>0.091 ***</td>
<td>-0.093 ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.023)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kindergarten Cohort</td>
<td>-0.002</td>
<td>-0.005</td>
<td>-0.002</td>
<td>-0.006</td>
<td>+</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Grade</td>
<td>0.001</td>
<td>0.003</td>
<td>0.017</td>
<td>0.007</td>
<td>-0.019</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.006)</td>
<td>(0.018)</td>
<td>(0.006)</td>
<td></td>
<td>(0.024)</td>
</tr>
<tr>
<td>Years Exposed to NCLB</td>
<td>-0.007</td>
<td>+</td>
<td>-0.008</td>
<td>+</td>
<td>-0.006</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.703 ***</td>
<td>0.622 ***</td>
<td>0.758 ***</td>
<td>0.608 ***</td>
<td>0.654 ***</td>
<td>0.630 ***</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.032)</td>
<td>(0.030)</td>
<td>(0.029)</td>
<td></td>
<td>(0.031)</td>
</tr>
</tbody>
</table>

Random Effects Parameters

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SD of Constant</td>
<td>0.203 ***</td>
<td>0.208 ***</td>
<td>0.200 ***</td>
<td>0.190 ***</td>
<td>0.203 ***</td>
<td>0.234 ***</td>
</tr>
<tr>
<td>SD of Cohort</td>
<td>0.009 ***</td>
<td>0.018 ***</td>
<td>0.009 ***</td>
<td>0.013 ***</td>
<td>0.011 ***</td>
<td>0.027 ***</td>
</tr>
<tr>
<td>SD of Grade</td>
<td>0.049 ***</td>
<td>0.022 ***</td>
<td>0.057 ***</td>
<td>0.018 ***</td>
<td>0.064 ***</td>
<td>0.031 ***</td>
</tr>
<tr>
<td>Number of States</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Number of Observation</td>
<td>1243</td>
<td>3898</td>
<td>651</td>
<td>1957</td>
<td>592</td>
<td>1941</td>
</tr>
</tbody>
</table>
Estimated NCLB Effects on Achievement Gaps (Exposure Models)

Annual Rate of Gap Change (SDs)

B/W (NAEP) B/W (State) Gap (Data Source) H/W (NAEP) H/W (State)
Estimated NCLB Effects on Achievement Gaps (CA Change Models)

Annual Rate of Gap Change (SDs)

Gap (Data Source/Model)

B/W(NAEP/Exp)
B/W (State/Exp)
B/W(NAEP/ITS)
H/W (NAEP/Exp)
H/W (State/Exp)
H/W(NAEP/ITS)
Estimated NCLB Effects on Achievement Gaps (CA Change Models)
Conclusions

- Black-white and Hispanic-white gaps have been narrowing over the last decade, at a rate of roughly $0.005 - 0.010$ standard deviations per year (less than 0.10 sd’s per decade).
 - Gaps narrowed at 3-4x this rate in 1970s and early 1980s.
 - At this rate, it will take 60-70 years to eliminate the gap.
- There is, however, considerable heterogeneity across states in the size of the gap and the rate at which it is narrowing
 - (why? an important topic for future research)
- Our *preliminary* evidence regarding the effects of NCLB on achievement gaps is mixed
 - Some models suggest NCLB has narrowed black-white gaps in math, in particular; other models suggest no effect of NCLB on black-white gap.
 - Little evidence of effect of NCLB on Hispanic-white gap
 - Our estimates are imprecise in many cases, so effects are unclear.