Modeling Intervention Effects on Subgroup Structure Across Social Networks

Tracy M. Sweet, Andrew C. Thomas and Brian W. Junker

Carnegie Mellon University

September 7, 2012
Outline

1. Introduction to Social Networks in Education Research

2. The Hierarchical Network Modeling (HNM) Framework

3. The Hierarchical Mixed Membership Stochastic Blockmodel (HMMSBM)
 - What is Mixed Membership?
 - HMMSBM for an Intervention

4. Conclusions and Future Work
What is a Social Network?

A social network is a set of relations or ties among individuals.

- A network is represented by its actors and ties.
- A matrix Y represents network, $Y_{ij} =$ the tie from actor i to j.

$$
Y = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
\end{bmatrix},
$$

- Y_{ij} can be discrete or continuous, with direction or without.

Figure: Reading Advice Network
Social Networks of Teachers

- Teaching the same grade and being in a leadership role promotes advice ties more than individual characteristics (Spillane et al., 2011)

- Existing network structure may influence intervention implementation
 - Forming new ties related to an initiative predicted by being in the same subgroup/same grade (Penuel et al., 2010)
 - Principal centrality related to teacher willingness to invest in change (Moolenaar et al., 2010)
 - Dense subgroups more involved with intervention than sparse subgroups (Daly et al., 2010)

- An intervention may influence network structure
 - Teachers in schools involved in school-wide initiatives were more connected to others (Weinbaum et al., 2008)
Outline

1. Introduction to Social Networks in Education Research

2. The Hierarchical Network Modeling (HNM) Framework

3. The Hierarchical Mixed Membership Stochastic Blockmodel (HMMSBM)
 - What is Mixed Membership?
 - HMMSBM for an Intervention

4. Conclusions and Future Work
Motivation

We want methods that can

- model the full structure of each network
- model the full sample of networks simultaneously
- compare treated and untreated networks

Figure: Advice Networks from Pitts and Spillane (2009)
Hierarchical Network Models

\[\Theta_1 \rightarrow \Theta_2 \rightarrow \cdots \rightarrow \Theta_{K-1} \rightarrow \Theta_K \rightarrow \cdots \]

Sweet, Thomas & Junker (CMU)
Hierarchical Network Models

\[P(\mathbb{Y}|\mathbb{X}, \Theta) = \prod_{k=1}^{K} P(Y_k|X_k = (X_{1k}, \ldots, X_{Pk}), \Theta_k = (\theta_{1k}, \ldots, \theta_{Qk})) \]

\[(\Theta_1, \ldots, \Theta_K) \sim F(\Theta_1, \ldots, \Theta_K|W_1, \ldots, W_K, \psi) , \]

- \(P(Y_k|X_k, \Theta_k) \) is a model for a single network \(Y_k \) with covariates \(X_k \) and parameters \(\Theta_k \)
- \(W_k \) can model a variety of dependence assumptions across networks
- \(\psi \) may specify additional hierarchical structure on \(\Theta \)
Outline

1 Introduction to Social Networks in Education Research

2 The Hierarchical Network Modeling (HNM) Framework

3 The Hierarchical Mixed Membership Stochastic Blockmodel (HMMSBM)
 - What is Mixed Membership?
 - HMMSBM for an Intervention

4 Conclusions and Future Work
Motivation

We want methods that can

- model the full structure of each network
- model the full sample of networks simultaneously
- compare treated and untreated networks
- accommodate subgroup structure

\[
\begin{bmatrix}
* & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & * & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & * & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & * & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & *
\end{bmatrix}
\]
What is Mixed Membership?

Typical blockmodels assume each individual belongs to one subgroup.

Mixed membership allows individuals to belong to multiple subgroups.
What is a Mixed Membership Network?

Network from Blockmodel

Network from MM Blockmodel
The Hierarchical Mixed Membership Stochastic Blockmodel (HMMSBM)

\[P(Y_{ijk} = 1) = B_k[S_{ijk}, R_{jik}] \]
\[P(S_{ijk} = s) = \theta_{isk} \]
\[P(R_{jik} = r) = \theta_{jrk} \]

- \(B_k[S, R] \) is the probability of a tie from group S to group R in network k
- \(S_{ijk} \) is the group membership of person i when sending a tie to person j
- \(R_{jik} \) is the group membership of person j when receiving a tie from person i
- \(\theta_{isk} \) is the probability that person i in network k belongs to group s

\[\theta_{ik} \sim Dirichlet(\lambda_k) \]

Small values of \(\lambda_k \) generate extreme the membership probabilities
A HMMSBM for an Intervention

Suppose an intervention is hypothesized to change isolated subgroups...

\[P(Y_{ijk} = 1) = B_k[S_{ijk}, R_{jik}] \]
\[P(S_{ijk} = s) = \theta_{isk} \]
\[P(R_{jik} = r) = \theta_{jrk} \]

\[\theta_{ik} \sim \text{Dirichlet}(\lambda_k) \]
\[\lambda_k = \lambda_0 + T_k(\vec{1} - \lambda_0)(1 - \alpha) \]

▶ \(T_k \) is treatment indicator
▶ \(\vec{1} \) is \((1, \ldots, 1)\) with length equal to number of groups
▶ \(\alpha \) is the treatment effect
▶ \(\lambda_0 \) generates the control group’s membership probabilities
Simulated Data from 20 Networks of Size 20; $\alpha = 0.53$

$$\theta_{ik} \sim \text{Dirichlet}(\lambda_k)$$

$$\lambda_k = \lambda_0 + T_k(\vec{1} - \lambda_0)(1 - \alpha)$$

$$\lambda_k = 0.05 + 0.45 T_k$$
A HMMSBM for an Intervention

Fitted Model

<table>
<thead>
<tr>
<th>Model Statement</th>
<th>Mathematical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_{ijk} \sim Bernoulli(B_k[S_{ijk}, R_{jik}]))</td>
<td></td>
</tr>
<tr>
<td>(S_{ijk} \sim Multinomial(\theta_{ik}, 1))</td>
<td></td>
</tr>
<tr>
<td>(R_{jik} \sim Multinomial(\theta_{jk}, 1))</td>
<td></td>
</tr>
<tr>
<td>(\theta_{ik} \sim Dirichlet(\lambda_k))</td>
<td></td>
</tr>
<tr>
<td>(B_{\ell k} \sim Beta(3, 1))</td>
<td></td>
</tr>
<tr>
<td>(B_{\ell mk} \sim Beta(1, 10), \ell \neq m)</td>
<td></td>
</tr>
<tr>
<td>(\lambda_k = \lambda_0 + T_k(\overrightarrow{1} - \lambda_0)(1 - \alpha))</td>
<td></td>
</tr>
<tr>
<td>(\alpha \sim Uniform(0, 1))</td>
<td></td>
</tr>
</tbody>
</table>

- Model fit using MCMC algorithm coded in R
- \(\lambda_0 = 0.05 \)
- 4 subgroups assumed a priori
Treatment Effect Parameter (α) Recovery
Tie Probability Recovery
Outline

1. Introduction to Social Networks in Education Research
2. The Hierarchical Network Modeling (HNM) Framework
3. The Hierarchical Mixed Membership Stochastic Blockmodel (HMMSBM)
 - What is Mixed Membership?
 - HMMSBM for an Intervention
4. Conclusions and Future Work
Conclusions

▶ Introduce the HNM Framework
 ▶ A flexible framework for modeling ensembles of social networks with a variety of dependence assumptions
 ▶ Incorporates entire network structure through choice of statistical social network model
 ▶ Can estimate treatment effects
 ▶ Accommodates subgroup structure

▶ Introduce the HMMSBM
 ▶ A type of HNM for subgroup structure
 ▶ Can estimate treatment effects
 ▶ Model fit with simulated data demonstrates feasibility
 ▶ Treatment effect parameter recovery is accurate
 ▶ Tie probability recovery is most accurate for networks with block structure
References

Future Work

- HMMSBM
 - Extend HMMSBM for valued ties
 - Apply HMMSBM to real datasets
 - Investigate model selection and specification
- Power Analysis for HNMs
 - Analytical sample size calculations (number of ties and number of)
 - Simulation studies to assess analytical results

Acknowledgements

- Program for Interdisciplinary Education Research (PIER) supported by IES Predoctoral Interdisciplinary Research Training Programs in the Education Sciences Grant R305B040063
- Hierarchical Network Models for Education Research supported by IES Statistical and Research Methodology in Education Grant R305D12004